Hall Joshua, Ehlen Niels, Berges Jan, van Loon Erik, van Efferen Camiel, Murray Clifford, Rösner Malte, Li Jun, Senkovskiy Boris V, Hell Martin, Rolf Matthias, Heider Tristan, Asensio María C, Avila José, Plucinski Lukasz, Wehling Tim, Grüneis Alexander, Michely Thomas
II. Physikalisches Institut , Universität zu Köln , Zülpicher Straße 77 , 50937 Köln , Germany.
Institut für Theoretische Physik, Bremen Center for Computational Materials Science , Universität Bremen , Otto-Hahn-Allee 1 , 28359 Bremen , Germany.
ACS Nano. 2019 Sep 24;13(9):10210-10220. doi: 10.1021/acsnano.9b03419. Epub 2019 Aug 30.
For quasi-freestanding 2H-TaS in monolayer thickness grown by molecular beam epitaxy on graphene on Ir(111), we find unambiguous evidence for a charge density wave close to a 3 × 3 periodicity. Using scanning tunneling spectroscopy, we determine the magnitude of the partial charge density wave gap. Angle-resolved photoemission spectroscopy, complemented by scanning tunneling spectroscopy for the unoccupied states, makes a tight-binding fit for the band structure of the TaS monolayer possible. As hybridization with substrate bands is absent, the fit yields a precise value for the doping of the TaS layer. Additional Li doping shifts the charge density wave to a 2 × 2 periodicity. Unexpectedly, the bilayer of TaS also displays a disordered 2 × 2 charge density wave. Calculations of the phonon dispersions based on a combination of density-functional theory, density-functional perturbation theory, and many-body perturbation theory enable us to provide phase diagrams for the TaS charge density wave as functions of doping, hybridization, and interlayer potentials, and offer insight into how they affect lattice dynamics and stability. Our theoretical considerations are consistent with the experimental work presented and shed light on previous experimental and theoretical investigations of related systems.
对于通过分子束外延生长在Ir(111)上的石墨烯上的单层厚度的准独立2H-TaS,我们发现了接近3×3周期性的电荷密度波的确凿证据。利用扫描隧道光谱,我们确定了部分电荷密度波能隙的大小。角分辨光电子能谱结合扫描隧道光谱对未占据态的研究,使得对TaS单层的能带结构进行紧束缚拟合成为可能。由于不存在与衬底能带的杂化,该拟合得出了TaS层掺杂的精确值。额外的锂掺杂将电荷密度波转变为2×2周期性。出乎意料的是,TaS双层也显示出无序的2×2电荷密度波。基于密度泛函理论、密度泛函微扰理论和多体微扰理论相结合的声子色散计算,使我们能够给出TaS电荷密度波作为掺杂、杂化和层间势函数的相图,并深入了解它们如何影响晶格动力学和稳定性。我们的理论考虑与所展示的实验工作一致,并为相关系统的先前实验和理论研究提供了启示。