Suppr超能文献

哈密顿能量作为一种有效的方法,用于识别生物网络中的关键调控因子。

Hamiltonian energy as an efficient approach to identify the significant key regulators in biological networks.

机构信息

Department of Neurology, All India Institute of Medical Science (AIIMS), New Delhi, India.

School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.

出版信息

PLoS One. 2019 Aug 23;14(8):e0221463. doi: 10.1371/journal.pone.0221463. eCollection 2019.

Abstract

The topological characteristics of biological networks enable us to identify the key nodes in terms of modularity. However, due to a large size of the biological networks with many hubs and functional modules across intertwined layers within the network, it often becomes difficult to accomplish the task of identifying potential key regulators. We use for the first time a generalized formalism of Hamiltonian Energy (HE) with a recursive approach. The concept, when applied to the Apoptosis Regulatory Gene Network (ARGN), helped us identify 11 Motif hubs (MHs), which influenced the network up to motif levels. The approach adopted allowed to classify MHs into 5 significant motif hubs (S-MHs) and 6 non-significant motif hubs (NS-MHs). The significant motif hubs had a higher HE value and were considered as high-active key regulators; while the non-significant motif hubs had a relatively lower HE value and were considered as low-active key regulators, in network control mechanism. Further, we compared the results of the HE analyses with the topological characterization, after subjecting to the three conditions independently: (i) removing all MHs, (ii) removing only S-MHs, and (iii) removing only NS-MHs from the ARGN. This procedure allowed us to cross-validate the role of 5 S-MHs, NFk-B1, BRCA1, CEBPB, AR, and POU2F1 as the potential key regulators. The changes in HE calculations further showed that the removal of 5 S-MHs could cause perturbation at all levels of the network, a feature not discernible by topological analysis alone.

摘要

生物网络的拓扑特征使我们能够根据模块性来识别关键节点。然而,由于生物网络的规模庞大,网络内部有许多枢纽和功能模块交织在一起,因此通常很难识别潜在的关键调节剂。我们首次使用具有递归方法的广义哈密顿能量(HE)形式化。当应用于细胞凋亡调控基因网络(ARGN)时,该概念帮助我们确定了 11 个基序枢纽(MHs),这些基序枢纽对网络的影响达到了基序水平。所采用的方法将 MHs 分为 5 个重要基序枢纽(S-MHs)和 6 个非重要基序枢纽(NS-MHs)。重要的基序枢纽具有更高的 HE 值,被认为是高活性的关键调节剂;而非重要的基序枢纽具有相对较低的 HE 值,被认为是网络控制机制中的低活性关键调节剂。此外,我们将 HE 分析的结果与拓扑特征进行了比较,方法是在独立满足以下三个条件的情况下对 ARGN 进行分析:(i)删除所有 MHs;(ii)仅删除 S-MHs;(iii)仅删除 NS-MHs。该程序允许我们交叉验证 5 个 S-MHs、NFk-B1、BRCA1、CEBPB、AR 和 POU2F1 作为潜在关键调节剂的作用。HE 计算的变化进一步表明,5 个 S-MHs 的去除可能会导致网络各个层次的扰动,而仅通过拓扑分析是无法识别这种特征的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4413/6707611/aef281532005/pone.0221463.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验