ILDMSF:基于多相似度融合的长非编码 RNA 与疾病关联推断。

ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):1106-1112. doi: 10.1109/TCBB.2019.2936476. Epub 2021 Jun 3.

Abstract

The dysregulation and mutation of long non-coding RNAs (lncRNAs) have been proved to result in a variety of human diseases. Identifying potential disease-related lncRNAs may benefit disease diagnosis, treatment and prognosis. A number of methods have been proposed to predict the potential lncRNA-disease relationships. However, most of them may give rise to incorrect results due to relying on single similarity measure. This article proposes a novel framework (ILDMSF) by fusing the lncRNA similarities and disease similarities, which are measured by lncRNA-related gene and known lncRNA-disease interaction and disease semantic interaction, and known lncRNA-disease interaction, respectively. Further, the support vector machine is employed to identify the potential lncRNA-disease associations based on the integrated similarity. The leave-one-out cross validation is performed to compare ILDMSF with other state of the art methods. The experimental results demonstrate our method is prospective in exploring potential correlations between lncRNA and disease.

摘要

长非编码 RNA(lncRNA)的失调和突变已被证明会导致多种人类疾病。鉴定潜在的与疾病相关的 lncRNA 可能有助于疾病的诊断、治疗和预后。已经提出了许多方法来预测潜在的 lncRNA-疾病关系。然而,由于依赖于单一的相似性度量,其中大多数方法可能会导致错误的结果。本文提出了一种新的框架(ILDMSF),通过融合 lncRNA 相似性和疾病相似性来实现,这两种相似性分别通过 lncRNA 相关基因和已知的 lncRNA-疾病相互作用以及疾病语义相互作用来测量,同时通过已知的 lncRNA-疾病相互作用来测量。进一步地,基于整合的相似性,支持向量机被用于识别潜在的 lncRNA-疾病关联。通过留一交叉验证,将 ILDMSF 与其他最先进的方法进行了比较。实验结果表明,我们的方法在探索 lncRNA 与疾病之间的潜在相关性方面具有前瞻性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索