Suppr超能文献

NGCN:通过整合来自异构网络的信息和特征学习进行药物-靶标相互作用预测。

NGCN: Drug-target interaction prediction by integrating information and feature learning from heterogeneous network.

机构信息

College of Life Science and Technology, Guangxi University, Nanning, China.

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

出版信息

J Cell Mol Med. 2024 Apr;28(7):e18224. doi: 10.1111/jcmm.18224.

Abstract

Drug-target interaction (DTI) prediction is essential for new drug design and development. Constructing heterogeneous network based on diverse information about drugs, proteins and diseases provides new opportunities for DTI prediction. However, the inherent complexity, high dimensionality and noise of such a network prevent us from taking full advantage of these network characteristics. This article proposes a novel method, NGCN, to predict drug-target interactions from an integrated heterogeneous network, from which to extract relevant biological properties and association information while maintaining the topology information. It focuses on learning the topology representation of drugs and targets to improve the performance of DTI prediction. Unlike traditional methods, it focuses on learning the low-dimensional topology representation of drugs and targets via graph-based convolutional neural network. NGCN achieves substantial performance improvements over other state-of-the-art methods, such as a nearly 1.0% increase in AUPR value. Moreover, we verify the robustness of NGCN through benchmark tests, and the experimental results demonstrate it is an extensible framework capable of combining heterogeneous information for DTI prediction.

摘要

药物-靶点相互作用(DTI)预测对于新药设计和开发至关重要。基于药物、蛋白质和疾病的各种信息构建异构网络,为 DTI 预测提供了新的机会。然而,这种网络的固有复杂性、高维度和噪声使得我们无法充分利用这些网络特征。本文提出了一种新的方法 NGCN,用于从集成的异构网络中预测药物-靶点相互作用,从中提取相关的生物学性质和关联信息,同时保持拓扑信息。它专注于学习药物和靶点的拓扑表示,以提高 DTI 预测的性能。与传统方法不同,它专注于通过基于图的卷积神经网络学习药物和靶点的低维拓扑表示。NGCN 在 AUPR 值方面取得了显著的性能提升,比其他最先进的方法提高了近 1.0%。此外,我们通过基准测试验证了 NGCN 的稳健性,实验结果表明它是一个可扩展的框架,能够结合异构信息进行 DTI 预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e7f/10955156/606f604879de/JCMM-28-e18224-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验