文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

ILPMDA: Predicting miRNA-Disease Association Based on Improved Label Propagation.

作者信息

Wang Yu-Tian, Li Lei, Ji Cun-Mei, Zheng Chun-Hou, Ni Jian-Cheng

机构信息

School of Cyber Science and Engineering, Qufu Normal University, Qufu, China.

School of Artificial Intelligence, Anhui University, Hefei, China.

出版信息

Front Genet. 2021 Sep 30;12:743665. doi: 10.3389/fgene.2021.743665. eCollection 2021.


DOI:10.3389/fgene.2021.743665
PMID:34659364
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8514753/
Abstract

MicroRNAs (miRNAs) are small non-coding RNAs that have been demonstrated to be related to numerous complex human diseases. Considerable studies have suggested that miRNAs affect many complicated bioprocesses. Hence, the investigation of disease-related miRNAs by utilizing computational methods is warranted. In this study, we presented an improved label propagation for miRNA-disease association prediction (ILPMDA) method to observe disease-related miRNAs. First, we utilized similarity kernel fusion to integrate different types of biological information for generating miRNA and disease similarity networks. Second, we applied the weighted k-nearest known neighbor algorithm to update verified miRNA-disease association data. Third, we utilized improved label propagation in disease and miRNA similarity networks to make association prediction. Furthermore, we obtained final prediction scores by adopting an average ensemble method to integrate the two kinds of prediction results. To evaluate the prediction performance of ILPMDA, two types of cross-validation methods and case studies on three significant human diseases were implemented to determine the accuracy and effectiveness of ILPMDA. All results demonstrated that ILPMDA had the ability to discover potential miRNA-disease associations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/baaf621f34f8/fgene-12-743665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/9aea01da41b9/fgene-12-743665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/49c83c3139b8/fgene-12-743665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/234297311da6/fgene-12-743665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/0ffe4019b448/fgene-12-743665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/963be82ad7c6/fgene-12-743665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/baaf621f34f8/fgene-12-743665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/9aea01da41b9/fgene-12-743665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/49c83c3139b8/fgene-12-743665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/234297311da6/fgene-12-743665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/0ffe4019b448/fgene-12-743665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/963be82ad7c6/fgene-12-743665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b72/8514753/baaf621f34f8/fgene-12-743665-g006.jpg

相似文献

[1]
ILPMDA: Predicting miRNA-Disease Association Based on Improved Label Propagation.

Front Genet. 2021-9-30

[2]
MDSCMF: Matrix Decomposition and Similarity-Constrained Matrix Factorization for miRNA-Disease Association Prediction.

Genes (Basel). 2022-6-6

[3]
GCAEMDA: Predicting miRNA-disease associations via graph convolutional autoencoder.

PLoS Comput Biol. 2021-12

[4]
SNFIMCMDA: Similarity Network Fusion and Inductive Matrix Completion for miRNA-Disease Association Prediction.

Front Cell Dev Biol. 2021-2-9

[5]
MCLPMDA: A novel method for miRNA-disease association prediction based on matrix completion and label propagation.

J Cell Mol Med. 2018-11-29

[6]
Predicting multiple types of MicroRNA-disease associations based on tensor factorization and label propagation.

Comput Biol Med. 2022-7

[7]
A Semi-Supervised Learning Algorithm for Predicting Four Types MiRNA-Disease Associations by Mutual Information in a Heterogeneous Network.

Genes (Basel). 2018-3-2

[8]
Predicting miRNA-Disease Association Based on Improved Graph Regression.

IEEE/ACM Trans Comput Biol Bioinform. 2022

[9]
SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization.

PLoS Comput Biol. 2021-7

[10]
MvKFN-MDA: Multi-view Kernel Fusion Network for miRNA-disease association prediction.

Artif Intell Med. 2021-8

本文引用的文献

[1]
NMCMDA: neural multicategory MiRNA-disease association prediction.

Brief Bioinform. 2021-9-2

[2]
Tensor decomposition with relational constraints for predicting multiple types of microRNA-disease associations.

Brief Bioinform. 2021-5-20

[3]
MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association.

Front Genet. 2020-4-15

[4]
Graph regularized L-nonnegative matrix factorization for miRNA-disease association prediction.

BMC Bioinformatics. 2020-2-18

[5]
Predicting potential miRNA-disease associations by combining gradient boosting decision tree with logistic regression.

Comput Biol Chem. 2020-4

[6]
Identifying Potential miRNAs-Disease Associations With Probability Matrix Factorization.

Front Genet. 2019-12-11

[7]
Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction.

Bioinformatics. 2020-4-15

[8]
A novel target convergence set based random walk with restart for prediction of potential LncRNA-disease associations.

BMC Bioinformatics. 2019-12-3

[9]
An efficient approach based on multi-sources information to predict circRNA-disease associations using deep convolutional neural network.

Bioinformatics. 2020-7-1

[10]
ILDMSF: Inferring Associations Between Long Non-Coding RNA and Disease Based on Multi-Similarity Fusion.

IEEE/ACM Trans Comput Biol Bioinform. 2021

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索