Suppr超能文献

Day 5 KIDScore™ 形态动力学预测模型对单个囊胚移植后种植和活产的预测性能。

Performance of Day 5 KIDScore™ morphokinetic prediction models of implantation and live birth after single blastocyst transfer.

机构信息

Service de biologie et médecine de la reproduction, CHU Nantes, 38 boulevard Jean Monnet, 44093, Nantes, France.

Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes, Nantes, France.

出版信息

J Assist Reprod Genet. 2019 Nov;36(11):2279-2285. doi: 10.1007/s10815-019-01567-x. Epub 2019 Aug 23.

Abstract

PURPOSE

While several studies reported the association between morphokinetic parameters and implantation, few predictive models were developed to predict implantation after day 5 embryo transfer, generally without external validation. The objective of this study was to evaluate the respective performance of 2 commercially available morphokinetic-based models (KIDScore™ Day 5 versions 1 and 2) for the prediction of implantation and live birth after day 5 single blastocyst transfer.

METHODS

This monocentric retrospective study was conducted on 210 ICSI cycles with single day 5 embryo transfer performed with a time-lapse imaging (TLI) system between 2013 and 2016. The association between both KIDScore™ and the observed implantation and live birth rates was calculated, as well as the agreement between embryologist's choice for transfer and embryo ranking by the models.

RESULTS

Implantation and live birth rate were both 35.7%. A significant positive correlation was found between both models and implantation rate (r = 0.96 and r = 0.90, p = 0.01) respectively. Both models had statistically significant but limited predictive power for implantation (AUC 0.60). There was a fair agreement between the embryologists' choice and both models (78% and 61% respectively), with minor differences in case of discrepancies.

CONCLUSIONS

KIDScore™ Day 5 predictive models are significantly associated with implantation rates after day 5 single blastocyst transfer. However, their predictive performance remains perfectible. The use of these predictive models holds promises as decision-making tools to help the embryologist select the best embryo, ultimately facilitating the implementation of SET policy. However, embryologists' expertise remains absolutely necessary to make the final decision.

摘要

目的

尽管有几项研究报道了形态动力学参数与着床之间的关系,但很少有预测模型被开发出来用于预测第 5 天胚胎移植后的着床,而且这些模型通常没有经过外部验证。本研究的目的是评估两种商业上可用的形态动力学预测模型(KIDScore™第 5 天版本 1 和 2)在预测第 5 天单囊胚移植后着床和活产的各自性能。

方法

这是一项单中心回顾性研究,纳入了 2013 年至 2016 年期间在使用时间-lapse 成像(TLI)系统进行的 210 个 ICSI 周期中,这些周期均进行了第 5 天的单个胚胎移植。计算了两种 KIDScore™与观察到的着床率和活产率之间的关联,以及胚胎学家选择的胚胎与模型对胚胎的排名之间的一致性。

结果

着床率和活产率分别为 35.7%。发现两种模型与着床率均呈显著正相关(r=0.96 和 r=0.90,p=0.01)。两种模型对着床均具有统计学上显著但有限的预测能力(AUC 为 0.60)。胚胎学家的选择与两种模型之间存在良好的一致性(分别为 78%和 61%),但在有差异的情况下存在细微差异。

结论

KIDScore™第 5 天预测模型与第 5 天单囊胚移植后的着床率显著相关。然而,它们的预测性能仍有待提高。这些预测模型的使用作为决策工具具有很大的潜力,可以帮助胚胎学家选择最佳胚胎,最终促进 SET 政策的实施。然而,胚胎学家的专业知识仍然是做出最终决策的绝对必要条件。

相似文献

9
External validation of a time-lapse prediction model.体外验证时间推移预测模型。
Fertil Steril. 2015 Apr;103(4):917-22. doi: 10.1016/j.fertnstert.2014.12.111. Epub 2015 Jan 23.

引用本文的文献

4
A review of artificial intelligence applications in in vitro fertilization.人工智能在体外受精中的应用综述。
J Assist Reprod Genet. 2025 Jan;42(1):3-14. doi: 10.1007/s10815-024-03284-6. Epub 2024 Oct 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验