Suppr超能文献

从创伤患者的放射学报告中识别偶然发现:自动化特征表示方法的评估。

Identifying incidental findings from radiology reports of trauma patients: An evaluation of automated feature representation methods.

机构信息

Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, United States; School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, United States.

School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

Int J Med Inform. 2019 Sep;129:81-87. doi: 10.1016/j.ijmedinf.2019.05.021. Epub 2019 Jun 6.

Abstract

BACKGROUND

Radiologic imaging of trauma patients often uncovers findings that are unrelated to the trauma. These are termed as incidental findings and identifying them in radiology examination reports is necessary for appropriate follow-up. We developed and evaluated an automated pipeline to identify incidental findings at sentence and section levels in radiology reports of trauma patients.

METHODS

We created an annotated dataset of 4,181 reports and investigated automated feature representations including traditional word and clinical concept (such as SNOMED CT) representations, as well as word and concept embeddings. We evaluated these representations by using them with traditional classifiers such as logistic regression and with deep learning methods such as convolutional neural networks (CNNs).

RESULTS

The best performance was observed using word embeddings with CNNs with F scores of 0.66 and 0.52 at section and sentence levels respectively. The F score was statistically significantly higher for sections compared to sentences (Wilcoxon; Z < 0.001, p < 0.05). Compared to using words alone, the addition of SNOMED CT concepts did not improve performance. At the sentence level, the F score improved significantly from 0.46 to 0.52 when using pre-trained embeddings (Wilcoxon; Z < 0.001, p < 0.05).

CONCLUSION

The results show that the best performance was achieved by using embeddings with CNNs at both sentence and section levels. This provides evidence that such a pipeline is capable of accurately identifying incidental findings in radiology reports in an automated manner.

摘要

背景

创伤患者的放射影像学检查常常会发现与创伤无关的结果。这些结果被称为偶然发现,在放射学检查报告中识别这些发现对于进行适当的随访是必要的。我们开发并评估了一种自动化管道,用于在创伤患者的放射学报告中识别句子和段落级别的偶然发现。

方法

我们创建了一个包含 4181 份报告的标注数据集,并研究了自动特征表示,包括传统的单词和临床概念(如 SNOMED CT)表示,以及单词和概念嵌入。我们使用传统分类器(如逻辑回归)和深度学习方法(如卷积神经网络(CNN))来评估这些表示。

结果

在句子和段落级别,使用单词嵌入和 CNN 的最佳性能分别为 0.66 和 0.52 的 F 分数。与句子相比,F 分数在段落上的表现显著更高(Wilcoxon;Z < 0.001,p < 0.05)。与仅使用单词相比,添加 SNOMED CT 概念并不能提高性能。在句子级别,当使用预训练的嵌入时,F 分数从 0.46 显著提高到 0.52(Wilcoxon;Z < 0.001,p < 0.05)。

结论

结果表明,在句子和段落级别,使用 CNN 进行嵌入的性能最佳。这表明该管道能够以自动化方式准确识别放射学报告中的偶然发现。

相似文献

本文引用的文献

3
Deep Learning to Classify Radiology Free-Text Reports.深度学习在放射科自由文本报告分类中的应用
Radiology. 2018 Mar;286(3):845-852. doi: 10.1148/radiol.2017171115. Epub 2017 Nov 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验