Suppr超能文献

临床护理中的交互式自然语言处理:在放射学报告中识别偶然发现。

Interactive NLP in Clinical Care: Identifying Incidental Findings in Radiology Reports.

机构信息

Intelligent Systems Program, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.

Department of Surgery and Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.

出版信息

Appl Clin Inform. 2019 Aug;10(4):655-669. doi: 10.1055/s-0039-1695791. Epub 2019 Sep 4.

Abstract

BACKGROUND

Despite advances in natural language processing (NLP), extracting information from clinical text is expensive. Interactive tools that are capable of easing the construction, review, and revision of NLP models can reduce this cost and improve the utility of clinical reports for clinical and secondary use.

OBJECTIVES

We present the design and implementation of an interactive NLP tool for identifying incidental findings in radiology reports, along with a user study evaluating the performance and usability of the tool.

METHODS

Expert reviewers provided gold standard annotations for 130 patient encounters (694 reports) at sentence, section, and report levels. We performed a user study with 15 physicians to evaluate the accuracy and usability of our tool. Participants reviewed encounters split into intervention (with predictions) and control conditions (no predictions). We measured changes in model performance, the time spent, and the number of user actions needed. The System Usability Scale (SUS) and an open-ended questionnaire were used to assess usability.

RESULTS

Starting from bootstrapped models trained on 6 patient encounters, we observed an average increase in F1 score from 0.31 to 0.75 for reports, from 0.32 to 0.68 for sections, and from 0.22 to 0.60 for sentences on a held-out test data set, over an hour-long study session. We found that tool helped significantly reduce the time spent in reviewing encounters (134.30 vs. 148.44 seconds in intervention and control, respectively), while maintaining overall quality of labels as measured against the gold standard. The tool was well received by the study participants with a very good overall SUS score of 78.67.

CONCLUSION

The user study demonstrated successful use of the tool by physicians for identifying incidental findings. These results support the viability of adopting interactive NLP tools in clinical care settings for a wider range of clinical applications.

摘要

背景

尽管自然语言处理(NLP)技术取得了进步,但从临床文本中提取信息的成本仍然很高。能够简化 NLP 模型构建、审核和修订的交互式工具可以降低成本,并提高临床报告在临床和二次使用中的实用性。

目的

我们介绍了一种用于识别放射学报告中偶然发现的交互式 NLP 工具的设计和实现,以及一项评估该工具性能和可用性的用户研究。

方法

专家评审员对 130 个患者就诊(694 份报告)进行了句子、部分和报告级别的黄金标准注释。我们进行了一项包含 15 名医生的用户研究,以评估我们工具的准确性和可用性。参与者在干预(有预测)和对照(无预测)条件下查看就诊记录。我们测量了模型性能、花费时间和所需用户操作次数的变化。系统可用性量表(SUS)和开放性问题问卷调查用于评估可用性。

结果

从在 6 个患者就诊中进行的自举模型开始,我们在一个持续一个多小时的研究期间,在一个独立的测试数据集上观察到报告的 F1 评分从 0.31 增加到 0.75,从 0.32 增加到 0.68,从句子的 0.22 增加到 0.60,从 0.31 增加到 0.75。我们发现,该工具显著帮助减少了审阅就诊记录的时间(干预和对照条件下分别为 134.30 秒和 148.44 秒),同时保持了与黄金标准相比的整体标签质量。研究参与者对该工具的评价非常好,总体 SUS 评分为 78.67。

结论

用户研究表明,医生成功地使用该工具来识别偶然发现。这些结果支持在更广泛的临床应用中,在临床护理环境中采用交互式 NLP 工具的可行性。

相似文献

1
Interactive NLP in Clinical Care: Identifying Incidental Findings in Radiology Reports.
Appl Clin Inform. 2019 Aug;10(4):655-669. doi: 10.1055/s-0039-1695791. Epub 2019 Sep 4.
6
Informatics in radiology: RADTF: a semantic search-enabled, natural language processor-generated radiology teaching file.
Radiographics. 2010 Nov;30(7):2039-48. doi: 10.1148/rg.307105083. Epub 2010 Aug 26.
7
Natural Language Processing for Identification of Incidental Pulmonary Nodules in Radiology Reports.
J Am Coll Radiol. 2019 Nov;16(11):1587-1594. doi: 10.1016/j.jacr.2019.04.026. Epub 2019 May 24.
10
Natural language processing of radiology reports for identification of skeletal site-specific fractures.
BMC Med Inform Decis Mak. 2019 Apr 4;19(Suppl 3):73. doi: 10.1186/s12911-019-0780-5.

引用本文的文献

1
Structured Transformation of Unstructured Prostate MRI Reports Using Large Language Models.
Tomography. 2025 Jun 17;11(6):69. doi: 10.3390/tomography11060069.
3
Natural Language Processing Model for Identifying Critical Findings-A Multi-Institutional Study.
J Digit Imaging. 2023 Feb;36(1):105-113. doi: 10.1007/s10278-022-00712-w. Epub 2022 Nov 7.
4
System-driven longitudinal follow-up of incidental imaging findings.
Br J Radiol. 2023 Feb;96(1142):20220573. doi: 10.1259/bjr.20220573. Epub 2022 Oct 1.
6
Overview of Noninterpretive Artificial Intelligence Models for Safety, Quality, Workflow, and Education Applications in Radiology Practice.
Radiol Artif Intell. 2022 Feb 2;4(2):e210114. doi: 10.1148/ryai.210114. eCollection 2022 Mar.
7
Different Data Mining Approaches Based Medical Text Data.
J Healthc Eng. 2021 Dec 6;2021:1285167. doi: 10.1155/2021/1285167. eCollection 2021.
8
Machine Learning for Detection of Correct Peripherally Inserted Central Catheter Tip Position from Radiology Reports in Infants.
Appl Clin Inform. 2021 Aug;12(4):856-863. doi: 10.1055/s-0041-1735178. Epub 2021 Sep 8.

本文引用的文献

1
Identifying incidental findings from radiology reports of trauma patients: An evaluation of automated feature representation methods.
Int J Med Inform. 2019 Sep;129:81-87. doi: 10.1016/j.ijmedinf.2019.05.021. Epub 2019 Jun 6.
2
Machine Learning in Medicine.
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
3
Agency plus automation: Designing artificial intelligence into interactive systems.
Proc Natl Acad Sci U S A. 2019 Feb 5;116(6):1844-1850. doi: 10.1073/pnas.1807184115.
4
Interactive medical word sense disambiguation through informed learning.
J Am Med Inform Assoc. 2018 Jul 1;25(7):800-808. doi: 10.1093/jamia/ocy013.
5
Natural Language-based Machine Learning Models for the Annotation of Clinical Radiology Reports.
Radiology. 2018 May;287(2):570-580. doi: 10.1148/radiol.2018171093. Epub 2018 Jan 30.
6
Overdiagnosis across medical disciplines: a scoping review.
BMJ Open. 2017 Dec 27;7(12):e018448. doi: 10.1136/bmjopen-2017-018448.
7
CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines.
J Am Med Inform Assoc. 2018 Mar 1;25(3):331-336. doi: 10.1093/jamia/ocx132.
8
NLPReViz: an interactive tool for natural language processing on clinical text.
J Am Med Inform Assoc. 2018 Jan 1;25(1):81-87. doi: 10.1093/jamia/ocx070.
9
Canary: An NLP Platform for Clinicians and Researchers.
Appl Clin Inform. 2017 May 3;8(2):447-453. doi: 10.4338/ACI-2017-01-IE-0018.
10
Incidental findings in blunt trauma patients: prevalence, follow-up documentation, and risk factors.
Emerg Radiol. 2017 Aug;24(4):347-353. doi: 10.1007/s10140-017-1479-5. Epub 2017 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验