Electrochemical Energy Conversion Group, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
University of Duisburg-Essen, Technical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany.
J Colloid Interface Sci. 2019 Nov 15;556:180-192. doi: 10.1016/j.jcis.2019.08.056. Epub 2019 Aug 16.
Core-shell nanoparticles represent a class of materials that exhibit a variety of properties. By rationally tuning the cores and the shells in such nanoparticles (NPs), a range of materials with tailorable properties can be produced which are of interest for a wide variety of applications. Herein, experimental and theoretical approaches have been combined to show the structural transformation of NPs resulting to the formation of either NiFeC encapsulated in ultra-thin graphene layer (NiFe@UTG) or NiC/FeC@FeO NPs with the universal one-step pulse laser ablation in liquid (PLAL) method. Analysis suggests that carbon in NiC is the source for the carbon shell formation, whereas the final carbon-shell thickness in the NPs originates from the difference between NiC and FeC phases stability at room temperature. The ternary Ni-Fe-C phase diagram calculations reveal the competition between carbon solubility in the studied metals (Ni and Fe) and their tendency toward oxidation as the key properties to produce controlled core-shell NP materials. As an application example, the electrocatalytic hydrogen evolution current on the different NPs is measured. The electrochemical analysis of the NPs reveals that NiFe@UTG has the best performance amongst the NPs in this study in both alkaline and acidic media.
核壳纳米粒子代表了一类具有多种性质的材料。通过合理调整此类纳米粒子(NPs)的核和壳,可以制备出一系列具有可定制性质的材料,这些材料在各种应用中都具有重要意义。在此,我们结合实验和理论方法,展示了 NPs 的结构转变,导致形成了被超薄石墨烯层(NiFe@UTG)包裹的 NiFeC 或 NiC/FeC@FeO NPs,其方法为通用的一步脉冲激光烧蚀在液体(PLAL)中。分析表明,NiC 中的碳是形成碳壳的来源,而 NPs 中碳壳的最终厚度则源于 NiC 和 FeC 相在室温下稳定性之间的差异。三元 Ni-Fe-C 相图计算表明,研究金属(Ni 和 Fe)中碳的溶解度及其氧化倾向是制备可控核壳 NP 材料的关键性质。作为一个应用实例,测量了不同 NPs 上的电催化析氢电流。NPs 的电化学分析表明,在碱性和酸性介质中,NiFe@UTG 在本研究中的 NPs 中表现出最佳性能。