Suppr超能文献

通过液相激光烧蚀法综合设计具有可调结构的先进金属碳化物@石墨烯和金属碳化物@氧化铁纳米粒子。

Comprehensive study to design advanced metal-carbide@garaphene and metal-carbide@iron oxide nanoparticles with tunable structure by the laser ablation in liquid.

机构信息

Electrochemical Energy Conversion Group, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.

University of Duisburg-Essen, Technical Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), Universitätsstr. 7, 45141 Essen, Germany.

出版信息

J Colloid Interface Sci. 2019 Nov 15;556:180-192. doi: 10.1016/j.jcis.2019.08.056. Epub 2019 Aug 16.

Abstract

Core-shell nanoparticles represent a class of materials that exhibit a variety of properties. By rationally tuning the cores and the shells in such nanoparticles (NPs), a range of materials with tailorable properties can be produced which are of interest for a wide variety of applications. Herein, experimental and theoretical approaches have been combined to show the structural transformation of NPs resulting to the formation of either NiFeC encapsulated in ultra-thin graphene layer (NiFe@UTG) or NiC/FeC@FeO NPs with the universal one-step pulse laser ablation in liquid (PLAL) method. Analysis suggests that carbon in NiC is the source for the carbon shell formation, whereas the final carbon-shell thickness in the NPs originates from the difference between NiC and FeC phases stability at room temperature. The ternary Ni-Fe-C phase diagram calculations reveal the competition between carbon solubility in the studied metals (Ni and Fe) and their tendency toward oxidation as the key properties to produce controlled core-shell NP materials. As an application example, the electrocatalytic hydrogen evolution current on the different NPs is measured. The electrochemical analysis of the NPs reveals that NiFe@UTG has the best performance amongst the NPs in this study in both alkaline and acidic media.

摘要

核壳纳米粒子代表了一类具有多种性质的材料。通过合理调整此类纳米粒子(NPs)的核和壳,可以制备出一系列具有可定制性质的材料,这些材料在各种应用中都具有重要意义。在此,我们结合实验和理论方法,展示了 NPs 的结构转变,导致形成了被超薄石墨烯层(NiFe@UTG)包裹的 NiFeC 或 NiC/FeC@FeO NPs,其方法为通用的一步脉冲激光烧蚀在液体(PLAL)中。分析表明,NiC 中的碳是形成碳壳的来源,而 NPs 中碳壳的最终厚度则源于 NiC 和 FeC 相在室温下稳定性之间的差异。三元 Ni-Fe-C 相图计算表明,研究金属(Ni 和 Fe)中碳的溶解度及其氧化倾向是制备可控核壳 NP 材料的关键性质。作为一个应用实例,测量了不同 NPs 上的电催化析氢电流。NPs 的电化学分析表明,在碱性和酸性介质中,NiFe@UTG 在本研究中的 NPs 中表现出最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验