The Department of Chemistry, Northwestern University, Evanston, IL, USA.
Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
Arch Biochem Biophys. 2019 Sep 30;673:108080. doi: 10.1016/j.abb.2019.108080. Epub 2019 Aug 22.
The electron configuration of flavin cofactors, FMN and FAD, is a critical factor governing the reactivity of NADPH-cytochrome P450 reductase (CPR). The current view of electron transfer by the mammalian CPR, based on equilibrium redox potentials of the flavin cofactors, is that the two electron-reduced FMN hydroquinone (FMNH2), rather than one electron-reduced FMN semiquinone, serves as electron donor to the terminal protein acceptors. However, kinetic and thermodynamic studies on the CPR species originated from different organisms have shown that redox potentials measured at distinct electron transfer steps differ from redox potentials determined by equilibrium titration. Collectively, previous observations suggest that the short-lived transient semiquinone species may carry electrons in diflavin reductases. In this work, we have investigated spectroscopic properties of the CPR-bound FAD and FMN reduced at 77 K by radiolytically-generated thermalized electrons. Using UV-vis spectroscopy, we demonstrated that upon cryo-reduction of oxidized yeast CPR (yCPR) containing an equimolar ratio of both FAD and FMN, or FAD alone, neutral semiquinones were trapped at 77 K. During annealing at the elevated temperatures, unstable short-lived neutral semiquinones relaxed to spectroscopically distinct air-stable neutral semiquinones. This transition was independent of pH within the 6.0-10.7 range. Our data on yeast CPR are in line with the previous observations of others that the flavin short-lived transient semiquinone intermediates may have a role in the electron transfer by CPR at physiological conditions.
黄素辅因子(FMN 和 FAD)的电子构型是调节 NADPH-细胞色素 P450 还原酶(CPR)反应性的关键因素。基于黄素辅因子的平衡氧化还原电位,目前哺乳动物 CPR 电子转移的观点是,两个电子还原的 FMN 氢醌(FMNH2),而不是一个电子还原的 FMN 半醌,作为电子供体提供给末端蛋白受体。然而,来自不同生物体的 CPR 物种的动力学和热力学研究表明,在不同电子转移步骤测量的氧化还原电位与通过平衡滴定确定的氧化还原电位不同。总的来说,以前的观察结果表明,短暂的瞬态半醌物种可能在双黄素还原酶中携带电子。在这项工作中,我们研究了通过辐照产生的热化电子在 77 K 下还原的 CPR 结合的 FAD 和 FMN 的光谱性质。使用紫外可见光谱,我们证明了在含有等摩尔比的 FAD 和 FMN 或仅 FAD 的氧化酵母 CPR(yCPR)的低温还原中,中性半醌在 77 K 下被捕获。在升高的温度退火期间,不稳定的短暂中性半醌松弛为光谱上明显不同的空气稳定中性半醌。这种转变与 pH 值在 6.0-10.7 范围内无关。我们关于酵母 CPR 的数据与其他人之前的观察结果一致,即黄素短暂的瞬态半醌中间体可能在生理条件下 CPR 的电子转移中发挥作用。