Suppr超能文献

采用无标记拉曼光谱法快速定量测定抗体药物偶联物治疗剂的聚集和颗粒形成。

Rapid, quantitative determination of aggregation and particle formation for antibody drug conjugate therapeutics with label-free Raman spectroscopy.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.

AstraZeneca, R&D Biopharmaceuticals, Biopharmaceutical Product Development, Analytical Sciences, Gaithersburg, MD, USA.

出版信息

Anal Chim Acta. 2019 Nov 12;1081:138-145. doi: 10.1016/j.aca.2019.07.007. Epub 2019 Jul 10.

Abstract

Lot release and stability testing of biologics are essential parts of the quality control strategy for ensuring therapeutic material dosed to patients is safe and efficacious, and consistent with previous clinical and toxicological experience. Characterization of protein aggregation is of particular significance, as aggregates may lose the intrinsic pharmaceutical properties as well as engage with the immune system instigating undesirable downstream immunogenicity. While important, real-time identification and quantification of subvisible particles in the monoclonal antibody (mAb) drug products remains inaccessible with existing techniques due to limitations in measurement time, sensitivity or experimental conditions. Here, owing to its exquisite molecular specificity, non-perturbative nature and lack of sample preparation requirements, we propose label-free Raman spectroscopy in conjunction with multivariate analysis as a solution to this unmet need. By leveraging subtle, but consistent, differences in vibrational modes of the biologics, we have developed a support vector machine-based regression model that provides fast, accurate prediction for a wide range of protein aggregations. Moreover, in blinded experiments, the model shows the ability to precisely differentiate between aggregation levels in mAb like product samples pre- and post-isothermal incubation, where an increase in aggregate levels was experimentally determined. In addition to offering fresh insights into mAb like product-specific aggregation mechanisms that can improve engineering of new protein therapeutics, our results highlight the potential of Raman spectroscopy as an in-line analytical tool for monitoring protein particle formation.

摘要

生物制品的放行和稳定性测试是质量控制策略的重要组成部分,可确保给予患者的治疗材料安全有效,且与之前的临床和毒理学经验一致。蛋白质聚集的特性分析尤为重要,因为聚集物可能会失去内在的药物特性,并与免疫系统相互作用,引发不良的下游免疫原性。尽管实时识别和定量单克隆抗体 (mAb) 药物产品中的亚可见颗粒非常重要,但由于测量时间、灵敏度或实验条件的限制,现有技术仍然无法实现这一目标。在这里,由于其具有精细的分子特异性、非侵入性和无需样品制备要求,我们提出了无标记拉曼光谱结合多元分析作为满足这一未满足需求的解决方案。通过利用生物制品振动模式的细微但一致的差异,我们开发了一种基于支持向量机的回归模型,该模型能够快速、准确地预测广泛的蛋白质聚集。此外,在盲测实验中,该模型能够准确地区分等温孵育前后 mAb 样产品样品中的聚集水平,实验确定聚集水平增加。除了提供有关 mAb 样产品特定聚集机制的新见解,从而可以改进新型蛋白质治疗药物的工程设计外,我们的结果还突出了拉曼光谱作为在线分析工具监测蛋白质颗粒形成的潜力。

相似文献

2
Raman Spectroscopy to Monitor Post-Translational Modifications and Degradation in Monoclonal Antibody Therapeutics.
Anal Chem. 2020 Aug 4;92(15):10381-10389. doi: 10.1021/acs.analchem.0c00627. Epub 2020 Jul 16.
3
Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy.
Anal Chem. 2016 Apr 19;88(8):4361-8. doi: 10.1021/acs.analchem.5b04794. Epub 2016 Apr 8.
4
Raman spectroscopy for in situ, real time monitoring of protein aggregation in lyophilized biotherapeutic products.
Int J Biol Macromol. 2021 May 15;179:309-313. doi: 10.1016/j.ijbiomac.2021.02.214. Epub 2021 Mar 6.
5
Characterizing Silicone Oil-Induced Protein Aggregation with Stimulated Raman Scattering Imaging.
Mol Pharm. 2023 Aug 7;20(8):4268-4276. doi: 10.1021/acs.molpharmaceut.3c00391. Epub 2023 Jun 29.
7
Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
PDA J Pharm Sci Technol. 2017 May-Jun;71(3):172-188. doi: 10.5731/pdajpst.2016.006726. Epub 2016 Oct 27.
8
Circular dichroism spectroscopy as a tool for monitoring aggregation in monoclonal antibody therapeutics.
Anal Chem. 2014 Dec 2;86(23):11606-13. doi: 10.1021/ac503140j. Epub 2014 Nov 12.
9
Raman spectroscopy combined with multiple algorithms for analysis and rapid screening of chronic renal failure.
Photodiagnosis Photodyn Ther. 2020 Jun;30:101792. doi: 10.1016/j.pdpdt.2020.101792. Epub 2020 Apr 28.
10
Closed, one-stop intelligent and accurate particle characterization based on micro-Raman spectroscopy and digital microfluidics.
Talanta. 2024 Jan 1;266(Pt 1):124895. doi: 10.1016/j.talanta.2023.124895. Epub 2023 Jul 3.

引用本文的文献

2
Multiplexed SERS Detection of Serum Cardiac Markers Using Plasmonic Metasurfaces.
Adv Sci (Weinh). 2024 Dec;11(45):e2405910. doi: 10.1002/advs.202405910. Epub 2024 Oct 15.
3
Generative data augmentation and automated optimization of convolutional neural networks for process monitoring.
Front Bioeng Biotechnol. 2024 Jan 31;12:1228846. doi: 10.3389/fbioe.2024.1228846. eCollection 2024.
5
Nanoplasmonic Avidity-Based Detection and Quantification of IgG Aggregates.
Anal Chem. 2022 Nov 15;94(45):15754-15762. doi: 10.1021/acs.analchem.2c03446. Epub 2022 Nov 1.
6
Visible Particle Identification Using Raman Spectroscopy and Machine Learning.
AAPS PharmSciTech. 2022 Jul 6;23(6):186. doi: 10.1208/s12249-022-02335-4.
8
New Technologies Bloom Together for Bettering Cancer Drug Conjugates.
Pharmacol Rev. 2022 Jul;74(3):680-711. doi: 10.1124/pharmrev.121.000499.

本文引用的文献

1
The Increasingly Human and Profitable Monoclonal Antibody Market.
Trends Biotechnol. 2019 Jan;37(1):9-16. doi: 10.1016/j.tibtech.2018.05.014. Epub 2018 Jun 23.
2
3
Differential diagnosis of otitis media with effusion using label-free Raman spectroscopy: A pilot study.
J Biophotonics. 2018 Jun;11(6):e201700259. doi: 10.1002/jbio.201700259. Epub 2018 Jan 17.
4
Two-Dimensional Raman Correlation Spectroscopy Study of Poly[(R)-3-hydroxybutyrate- co-(R)-3-hydroxyhexanoate] Copolymers.
Appl Spectrosc. 2017 Jul;71(7):1427-1431. doi: 10.1177/0003702817707219. Epub 2017 May 9.
5
Antibodies to watch in 2017.
MAbs. 2017 Feb/Mar;9(2):167-181. doi: 10.1080/19420862.2016.1269580. Epub 2016 Dec 14.
7
Editor's Highlight: Subvisible Aggregates of Immunogenic Proteins Promote a Th1-Type Response.
Toxicol Sci. 2016 Oct;153(2):258-70. doi: 10.1093/toxsci/kfw121. Epub 2016 Jun 30.
8
Rapid Identification of Biotherapeutics with Label-Free Raman Spectroscopy.
Anal Chem. 2016 Apr 19;88(8):4361-8. doi: 10.1021/acs.analchem.5b04794. Epub 2016 Apr 8.
9
Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics.
AAPS J. 2016 May;18(3):689-702. doi: 10.1208/s12248-016-9887-0. Epub 2016 Feb 22.
10
Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions.
Soft Matter. 2016 Apr 14;12(14):3293-302. doi: 10.1039/c5sm02830b. Epub 2016 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验