Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India.
Pharm Res. 2024 Mar;41(3):463-479. doi: 10.1007/s11095-024-03663-9. Epub 2024 Feb 16.
Charge related heterogeneities of monoclonal antibody (mAb) based therapeutic products are increasingly being considered as a critical quality attribute (CQA). They are typically estimated using analytical cation exchange chromatography (CEX), which is time consuming and not suitable for real time control. Raman spectroscopy coupled with artificial intelligence (AI) tools offers an opportunity for real time monitoring and control of charge variants.
We present a process analytical technology (PAT) tool for on-line and real-time charge variant determination during process scale CEX based on Raman spectroscopy employing machine learning techniques.
Raman spectra are collected from a reference library of samples with distribution of acidic, main, and basic species from 0-100% in a mAb concentration range of 0-20 g/L generated from process-scale CEX. The performance of different machine learning techniques for spectral processing is compared for predicting different charge variant species.
A convolutional neural network (CNN) based model was successfully calibrated for quantification of acidic species, main species, basic species, and total protein concentration with R values of 0.94, 0.99, 0.96 and 0.99, respectively, and the Root Mean Squared Error (RMSE) of 0.1846, 0.1627, and 0.1029 g/L, respectively, and 0.2483 g/L for the total protein concentration.
We demonstrate that Raman spectroscopy combined with AI-ML frameworks can deliver rapid and accurate determination of product related impurities. This approach can be used for real time CEX pooling decisions in mAb production processes, thus enabling consistent charge variant profiles to be achieved.
单克隆抗体(mAb)治疗产品的电荷相关异质性越来越被认为是关键质量属性(CQA)。它们通常使用分析阳离子交换色谱(CEX)进行评估,这种方法既耗时又不适合实时控制。拉曼光谱结合人工智能(AI)工具为实时监测和控制电荷变异体提供了机会。
我们提出了一种基于拉曼光谱的过程分析技术(PAT)工具,用于在基于 CEX 的过程规模上实时在线监测电荷变异体,该工具采用机器学习技术。
从参考库中收集拉曼光谱,该参考库中的样品分布有酸性、主要和碱性物种,其在 mAb 浓度范围为 0-20 g/L 时的分布范围为 0-100%,该浓度范围是由过程规模 CEX 生成的。比较了不同机器学习技术对光谱处理的性能,以预测不同的电荷变异体物种。
成功地为酸性物种、主要物种、碱性物种和总蛋白浓度建立了基于卷积神经网络(CNN)的模型,其 R 值分别为 0.94、0.99、0.96 和 0.99,均方根误差(RMSE)分别为 0.1846、0.1627 和 0.1029 g/L,总蛋白浓度的 RMSE 为 0.2483 g/L。
我们证明了拉曼光谱结合人工智能-机器学习框架可以快速准确地测定与产品相关的杂质。该方法可用于 mAb 生产过程中的实时 CEX 池决策,从而实现一致的电荷变异体分布。