Suppr超能文献

使用等离激元超表面对血清心脏标志物进行多重表面增强拉曼散射检测。

Multiplexed SERS Detection of Serum Cardiac Markers Using Plasmonic Metasurfaces.

作者信息

Zheng Peng, Wu Lintong, Raj Piyush, Kim Jeong Hee, Paidi Santosh Kumar, Semancik Steve, Barman Ishan

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Biomolecular Measurement Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.

出版信息

Adv Sci (Weinh). 2024 Dec;11(45):e2405910. doi: 10.1002/advs.202405910. Epub 2024 Oct 15.

Abstract

Surface-enhanced Raman spectroscopy (SERS) possesses exquisite molecular-specific properties with single-molecule sensitivity. Yet, translation of SERS into a quantitative analysis technique remains elusive owing to considerable fluctuation of the SERS intensity, which can be ascribed to the SERS uncertainty principle, a tradeoff between "reproducibility" and "enhancement". To provide a potential solution, herein, an integrated multiplexed SERS biosensing strategy is proposed, which features two distinct advantages. First, a subwavelength-structured plasmonic metasurface consisting of alternately stacked metal-dielectric pyramidal meta-atoms is fabricated and could provide simultaneously enhanced electric and magnetic fields to enable spatially extended and weakly wavelength-dependent SERS. Second, nanomechanical perturbations are harnessed to transduce signals in the form of SERS frequency shifts, which are not directly affected by the SERS uncertainty principle. By also employing 3D printing methods, a proof-of-concept study of multiplexed detection of a panel of serum cardiac biomarkers for acute myocardial infarction is provided. Success in the development of both the electric and magnetic fields-active plasmonic metasurfaces could transform future designs of SERS substrates with newly endowed functionalities, and frequency shift-based SERS multiplexing could open new opportunities to develop innovative quantitative optical techniques for applications in chemistry, biology, and medicine.

摘要

表面增强拉曼光谱(SERS)具有出色的分子特异性特性,具备单分子灵敏度。然而,由于SERS强度存在相当大的波动,将SERS转化为定量分析技术仍然难以实现,这种波动可归因于SERS不确定性原理,即在“可重复性”和“增强效果”之间的权衡。为了提供一种潜在的解决方案,本文提出了一种集成的多路复用SERS生物传感策略,该策略具有两个显著优点。首先,制备了一种由交替堆叠的金属-电介质金字塔形元原子组成的亚波长结构等离子体超表面,它可以同时提供增强的电场和磁场,以实现空间扩展且对波长依赖性较弱的SERS。其次,利用纳米机械扰动以SERS频移的形式来转换信号,而频移不受SERS不确定性原理的直接影响。通过采用3D打印方法,还提供了一项针对急性心肌梗死的一组血清心脏生物标志物进行多路复用检测的概念验证研究。兼具电场和磁场活性的等离子体超表面的成功开发可能会改变具有新赋予功能的SERS基底的未来设计,并且基于频移的SERS多路复用可能会为开发用于化学、生物学和医学应用的创新定量光学技术带来新机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31f7/11615760/40e42a9d6f54/ADVS-11-2405910-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验