Suppr超能文献

多模型传感器故障检测与数据协调:糖尿病葡萄糖浓度传感器的案例研究

Multi-Model Sensor Fault Detection and Data Reconciliation: A Case Study with Glucose Concentration Sensors for Diabetes.

作者信息

Feng Jianyuan, Hajizadeh Iman, Yu Xia, Rashid Mudassir, Samadi Sediqeh, Sevil Mert, Hobbs Nicole, Brandt Rachel, Lazaro Caterina, Maloney Zacharie, Littlejohn Elizabeth, Quinn Laurie, Cinar Ali

机构信息

Dept. of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616.

Dept. of Control Theory and Control Engineering, Northeastern University, Shenyang, Liaoning, China, 110819.

出版信息

AIChE J. 2019 Feb;65(2):629-639. doi: 10.1002/aic.16435. Epub 2018 Oct 5.

Abstract

Erroneous information from sensors affect process monitoring and control. An algorithm with multiple model identification methods will improve the sensitivity and accuracy of sensor fault detection and data reconciliation (SFD&DR). A novel SFD&DR algorithm with four types of models including outlier robust Kalman filter, locally weighted partial least squares, predictor-based subspace identification, and approximate linear dependency-based kernel recursive least squares is proposed. The residuals are further analyzed by artificial neural networks and a voting algorithm. The performance of the SFD&DR algorithm is illustrated by clinical data from artificial pancreas experiments with people with diabetes. The glucose-insulin metabolism has time-varying parameters and nonlinearities, providing a challenging system for fault detection and data reconciliation. Data from 17 clinical experiments collected over 896 hours were analyzed; the results indicate that the proposed SFD&DR algorithm is capable of detecting and diagnosing sensor faults and reconciling the erroneous sensor signals with better model-estimated values.

摘要

传感器的错误信息会影响过程监控与控制。一种采用多种模型识别方法的算法将提高传感器故障检测与数据协调(SFD&DR)的灵敏度和准确性。提出了一种新颖的SFD&DR算法,该算法包含四种类型的模型,即异常值鲁棒卡尔曼滤波器、局部加权偏最小二乘法、基于预测器的子空间辨识以及基于近似线性相关性的核递归最小二乘法。残差通过人工神经网络和投票算法进行进一步分析。通过糖尿病患者人工胰腺实验的临床数据说明了SFD&DR算法的性能。葡萄糖 - 胰岛素代谢具有时变参数和非线性特性,为故障检测和数据协调提供了一个具有挑战性的系统。分析了在896小时内收集的17个临床实验的数据;结果表明,所提出的SFD&DR算法能够检测和诊断传感器故障,并将错误的传感器信号与更好的模型估计值进行协调。

相似文献

3
A Scalable Algorithm for Identifying Multiple-Sensor Faults Using Disentangled RNNs.一种使用解缠递归神经网络识别多传感器故障的可扩展算法。
IEEE Trans Neural Netw Learn Syst. 2022 Mar;33(3):1093-1106. doi: 10.1109/TNNLS.2020.3040224. Epub 2022 Feb 28.
4
Real-Time Model-Based Fault Detection of Continuous Glucose Sensor Measurements.基于模型的连续血糖传感器测量实时故障检测
IEEE Trans Biomed Eng. 2017 Jul;64(7):1437-1445. doi: 10.1109/TBME.2016.2535412. Epub 2016 Feb 25.
6
A novel extended kernel recursive least squares algorithm.一种新颖的扩展核递归最小二乘算法。
Neural Netw. 2012 Aug;32:349-57. doi: 10.1016/j.neunet.2011.12.006. Epub 2011 Dec 29.

本文引用的文献

3
TensorFlow: Biology's Gateway to Deep Learning?TensorFlow:生物学通往深度学习的大门?
Cell Syst. 2016 Jan 27;2(1):12-4. doi: 10.1016/j.cels.2016.01.009.
7
An integrated multivariable artificial pancreas control system.一种集成多变量人工胰腺控制系统。
J Diabetes Sci Technol. 2014 May;8(3):498-507. doi: 10.1177/1932296814524862. Epub 2014 Apr 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验