Chair of Polymer Materials and Polymer Technologies , University of Potsdam, Institute of Chemistry , Karl-Liebknecht-Straße 24-25 , 14476 Potsdam , Germany.
Institute of Bioorganic Chemistry , Heinrich Heine University of Düsseldorf at Forschungszentrum Jülich , Stetternicher Forst , 52426 Jülich , Germany.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):34441-34453. doi: 10.1021/acsami.9b12029. Epub 2019 Sep 6.
Aldol reactions play an important role in organic synthesis, as they belong to the class of highly beneficial C-C-linking reactions. Aldol-type reactions can be efficiently and stereoselectively catalyzed by the enzyme 2-deoxy-d-ribose-5-phosphate aldolase (DERA) to gain key intermediates for pharmaceuticals such as atorvastatin. The immobilization of DERA would open the opportunity for a continuous operation mode which gives access to an efficient, large-scale production of respective organic intermediates. In this contribution, we synthesize and utilize DERA/polymer conjugates for the generation and fixation of a DERA bearing thin film on a polymeric membrane support. The conjugation strongly increases the tolerance of the enzyme toward the industrial relevant substrate acetaldehyde while UV-cross-linkable groups along the conjugated polymer chains provide the opportunity for covalent binding to the support. First, we provide a thorough characterization of the conjugates followed by immobilization tests on representative, nonporous cycloolefinic copolymer supports. Finally, immobilization on the target supports constituted of polyacrylonitrile (PAN) membranes is performed, and the resulting enzymatically active membranes are implemented in a simple membrane module setup for the first assessment of biocatalytic performance in the continuous operation mode using the combination hexanal/acetaldehyde as the substrate.
醛醇反应在有机合成中起着重要作用,因为它们属于高度有益的 C-C 键形成反应。醛醇型反应可以通过酶 2-脱氧-D-核糖-5-磷酸醛缩酶(DERA)有效地和立体选择性地催化,以获得阿托伐他汀等药物的关键中间体。DERA 的固定化将为连续操作模式打开机会,从而实现有效、大规模生产相应的有机中间体。在本研究中,我们合成并利用了 DERA/聚合物缀合物,以在聚合物膜载体上生成和固定带有 DERA 的薄膜。这种缀合强烈提高了酶对工业相关底物乙醛的耐受性,而沿共轭聚合物链的紫外光可交联基团则提供了与载体共价结合的机会。首先,我们对缀合物进行了彻底的表征,然后在代表性的非多孔环烯烃共聚物载体上进行了固定化测试。最后,在由聚丙烯腈(PAN)膜组成的目标载体上进行了固定化,并在简单的膜模块设置中实施了具有生物催化活性的膜,以使用组合的正己醛/乙醛作为底物在连续操作模式下首次评估生物催化性能。