Suppr超能文献

基于高阶马尔可夫随机场的肺部 4D CT 图像配准。

Lung 4D CT Image Registration Based on High-Order Markov Random Field.

出版信息

IEEE Trans Med Imaging. 2020 Apr;39(4):910-921. doi: 10.1109/TMI.2019.2937458. Epub 2019 Aug 26.

Abstract

To solve the problem that traditional image registration methods based on continuous optimization for large motion lung 4D CT image sequences are easy to fall into local optimal solutions and lead to serious misregistration, a novel image registration method based on high-order Markov Random Field (MRF) is proposed. By analyzing the effect of the deformation field constraint of the potential functions with different order cliques in MRF model, energy functions with high-order cliques form are designed separately for 2D and 3D images to preserve topology of the deformation field. In order to preserve the topology of the deformation field more effectively, it is necessary to apply a smooth term and a topology preservation term simultaneously in the energy function and use logarithmic function to impose a penalty on the Jacobian matrix with high-order cliques in the topology preservation term. For the complexity of the designed energy function with high-order cliques form, Markov Chain Monte Carlo (MCMC) algorithm is used to solve the optimization problem of the designed energy function. To address the high computational requirements in lung 4D CT image registration, a multi-level processing strategy is adopted to reduce the space complexity of the proposed registration method and promotes the computational efficiency. In the DIR-lab dataset with 4D CT images and the COPD (Chronic Obstructive Pulmonary Disease) dataset with 3D CT images, the average target registration error (TRE) of our proposed method can reach 0.95 mm respectively.

摘要

为了解决基于连续优化的传统医学图像配准方法对于大运动量的肺部 4D CT 图像序列易陷入局部最优解而导致严重配准错误的问题,提出了一种基于高阶马尔可夫随机场(MRF)的医学图像配准方法。通过分析 MRF 模型中不同阶邻接图的势函数对变形场的约束效果,分别为 2D 和 3D 图像设计了高阶邻接图形式的能量函数,以保持变形场的拓扑结构。为了更有效地保持变形场的拓扑结构,需要在能量函数中同时应用平滑项和拓扑保持项,并在拓扑保持项中对数函数对高阶邻接图的雅可比矩阵施加惩罚。针对设计的高阶邻接图形式的能量函数的复杂性,采用马尔可夫链蒙特卡罗(MCMC)算法来求解设计能量函数的优化问题。为了解决肺部 4D CT 图像配准中计算复杂度高的问题,采用多级处理策略来降低所提方法的空间复杂度,提高计算效率。在 DIR-lab 数据集(包含 4D CT 图像)和 COPD(慢性阻塞性肺疾病)数据集(包含 3D CT 图像)上的实验结果表明,我们提出的方法的平均目标配准误差(TRE)分别可以达到 0.95mm。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验