Suppr超能文献

稳健的 CT 通气从雅可比行列式的整体公式。

Robust CT ventilation from the integral formulation of the Jacobian.

机构信息

Department of Radiation Oncology, Beaumont Health Systems, Royal Oak, MI, USA.

Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA.

出版信息

Med Phys. 2019 May;46(5):2115-2125. doi: 10.1002/mp.13453. Epub 2019 Mar 22.

Abstract

UNLABELLED

Computed tomography (CT) derived ventilation algorithms estimate the apparent voxel volume changes within an inhale/exhale CT image pair. Transformation-based methods compute these estimates solely from the spatial transformation acquired by applying a deformable image registration (DIR) algorithm to the image pair. However, approaches based on finite difference approximations of the transformation's Jacobian have been shown to be numerically unstable. As a result, transformation-based CT ventilation is poorly reproducible with respect to both DIR algorithm and CT acquisition method.

PURPOSE

We introduce a novel Integrated Jacobian Formulation (IJF) method for estimating voxel volume changes under a DIR-recovered spatial transformation. The method is based on computing volume estimates of DIR mapped subregions using the hit-or-miss sampling algorithm for integral approximation. The novel approach allows for regional volume change estimates that (a) respect the resolution of the digital grid and (b) are based on approximations with quantitatively characterized and controllable levels of uncertainty. As such, the IJF method is designed to be robust to variations in DIR solutions and thus overall more reproducible.

METHODS

Numerically, Jacobian estimates are recovered by solving a simple constrained linear least squares problem that guarantees the recovered global volume change is equal to the global volume change obtained from the inhale and exhale lung segmentation masks. Reproducibility of the IJF method with respect to DIR solution was assessed using the expert-determined landmark point pairs and inhale/exhale phases from 10 four-dimensional computed tomographies (4DCTs) available on www.dir-lab.com. Reproducibility with respect to CT acquisition was assessed on the 4DCT and 4D cone beam CT (4DCBCT) images acquired for five lung cancer patients prior to radiotherapy.

RESULTS

The ten Dir-Lab 4DCT cases were registered twice with the same DIR algorithm, but with different smoothing parameter. Finite difference Jacobian (FDJ) and IFJ images were computed for both solutions. The average spatial errors (300 landmarks per case) for the two DIR solution methods were 0.98 (1.10) and 1.02 (1.11). The average Pearson correlation between the FDJ images computed from the two DIR solutions was 0.83 (0.03), while for the IJF images it was 1.00 (0.00). For intermodality assessment, the IJF and FDJ images were computed from the 4DCT and 4DCBCT of five patients. The average Pearson correlation of the spatially aligned FDJ images was 0.27 (0.11), while it was 0.77 (0.13) for the IFJ method.

CONCLUSION

The mathematical theory underpinning the IJF method allows for the generation of ventilation images that are (a) computed with respect to DIR spatial accuracy on the digital voxel grid and (b) based on DIR-measured subregional volume change estimates acquired with quantifiable and controllable levels of uncertainty. Analyses of the experiments are consistent with the mathematical theory and indicate that IJF ventilation imaging has a higher reproducibility with respect to both DIR algorithm and CT acquisition method, in comparison to the standard finite difference approach.

摘要

未加说明

计算机断层扫描(CT)衍生的通气算法估计吸入/呼出 CT 图像对中明显体素体积的变化。基于变换的方法仅从通过将可变形图像配准(DIR)算法应用于图像对获得的空间变换来计算这些估计。然而,已经证明基于变换雅可比行列式的有限差分逼近的方法在数值上是不稳定的。因此,基于变换的 CT 通气在 DIR 算法和 CT 采集方法方面的重现性都很差。

目的

我们引入了一种新的基于积分雅可比公式(IJF)的方法,用于估计 DIR 恢复的空间变换下的体素体积变化。该方法基于使用 hit-or-miss 采样算法对 DIR 映射子区域进行积分近似来计算体积估计。该新方法允许进行区域体积变化估计,这些估计(a)尊重数字网格的分辨率,(b)基于具有定量表征和可控制不确定性水平的近似值。因此,IJF 方法旨在对 DIR 解决方案的变化具有鲁棒性,从而整体上更具可重复性。

方法

数值上,通过求解一个简单的受约束线性最小二乘问题来恢复雅可比估计,该问题保证恢复的全局体积变化等于从吸入和呼出肺分割掩模获得的全局体积变化。通过在 www.dir-lab.com 上可用的 10 个 4DCT 上的专家确定的地标点对和吸入/呼出阶段,评估 IJF 方法对 DIR 解决方案的重现性。通过对 5 名肺癌患者在放射治疗前采集的 4DCT 和 4D 锥形束 CT(4DCBCT)图像进行评估,评估了对 CT 采集的重现性。

结果

十个 Dir-Lab 4DCT 病例使用相同的 DIR 算法两次进行注册,但平滑参数不同。为两个解决方案计算了有限差分雅可比(FDJ)和 IFJ 图像。两种 DIR 解决方案方法的平均空间误差(每个病例 300 个地标)分别为 0.98(1.10)和 1.02(1.11)。从两个 DIR 解决方案计算的 FDJ 图像之间的平均 Pearson 相关系数为 0.83(0.03),而 IJF 图像的相关系数为 1.00(0.00)。对于模态间评估,从五个患者的 4DCT 和 4DCBCT 计算了 IJF 和 FDJ 图像。空间对齐的 FDJ 图像的平均 Pearson 相关系数为 0.27(0.11),而 IJF 方法的相关系数为 0.77(0.13)。

结论

IJF 方法的数学理论允许生成(a)相对于数字体素网格上的 DIR 空间精度计算的通气图像,以及(b)基于 DIR 测量的具有可量化和可控不确定性水平的子区域体积变化估计的通气图像。实验分析与数学理论一致,并表明与标准有限差分方法相比,IFJ 通气成像在 DIR 算法和 CT 采集方法方面具有更高的重现性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc83/6849599/32645aa9993f/MP-46-2115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验