Suppr超能文献

脑卒中的自动神经影像处理与分析——系统综述。

Automatic Neuroimage Processing and Analysis in Stroke-A Systematic Review.

出版信息

IEEE Rev Biomed Eng. 2020;13:130-155. doi: 10.1109/RBME.2019.2934500. Epub 2019 Aug 23.

Abstract

This article presents a systematic review of the current computational technologies applied to medical images for the detection, segmentation, and classification of strokes. Besides, analyzing and evaluating the technological advances, the challenges to be overcome and the future trends are discussed. The principal approaches make use of artificial intelligence, digital image processing and analysis, and various other technologies to develop computer-aided diagnosis (CAD) systems to improve the accuracy in the diagnostic process, as well as the interpretation consistency of medical images. However, there are some points that require greater attention such as low sensitivity, optimization of the algorithm, a reduction of false positives, and improvement in the identification and segmentation processes of different sizes and shapes. Also, there is a need to improve the classification steps of different stroke types and subtypes. Furthermore, there is an additional need for further research to improve the current techniques and develop new algorithms to overcome disadvantages identified here. The main focus of this research is to analyze the applied technologies for the development of CAD systems and verify how effective they are for stroke detection, segmentation, and classification. The main contributions of this review are that it analyzes only up-to-date studies, mainly from 2015 to 2018, as well as organizing the various studies in the area according to the research proposal, i.e., detection, segmentation, and classification of the types of stroke and the respective techniques used. Thus, the review has great relevance for future research, since it presents an ample comparison of the most recent works in the area, clearly showing the existing difficulties and the models that have been proposed to overcome such difficulties.

摘要

本文对目前应用于医学图像中风检测、分割和分类的计算技术进行了系统回顾。此外,分析和评估了技术进步,讨论了需要克服的挑战和未来的趋势。主要方法利用人工智能、数字图像处理和分析以及其他各种技术来开发计算机辅助诊断 (CAD) 系统,以提高诊断过程中的准确性以及医学图像的解释一致性。然而,有些方面需要引起更多的关注,例如敏感性低、算法优化、减少假阳性、改进不同大小和形状的识别和分割过程。此外,需要改进不同中风类型和亚型的分类步骤。此外,还需要进一步研究以改进当前技术并开发新算法来克服这里确定的缺点。本研究的主要重点是分析用于开发 CAD 系统的应用技术,并验证它们在中风检测、分割和分类方面的有效性。本综述的主要贡献在于,它仅分析了最新的研究,主要是 2015 年至 2018 年的研究,并且根据研究方案对该领域的各个研究进行了组织,即中风类型的检测、分割和分类以及各自使用的技术。因此,该综述对未来的研究具有重要意义,因为它对该领域最近的工作进行了充分的比较,清楚地显示了现有的困难和为克服这些困难而提出的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验