文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

机器学习技术在利用MRI图像表征缺血性卒中中的应用:综述

Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review.

作者信息

Subudhi Asit, Dash Pratyusa, Mohapatra Manoranjan, Tan Ru-San, Acharya U Rajendra, Sabut Sukanta

机构信息

Department of Electronics & Communication Engineering, ITER, SOA Deemed to be University, Odisha 700107, India.

Department of Computer Science and Engineering, Heritage Institute of Technology, Kolkata 700107, India.

出版信息

Diagnostics (Basel). 2022 Oct 19;12(10):2535. doi: 10.3390/diagnostics12102535.


DOI:10.3390/diagnostics12102535
PMID:36292224
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9600234/
Abstract

Magnetic resonance imaging (MRI) is a standard tool for the diagnosis of stroke, but its manual interpretation by experts is arduous and time-consuming. Thus, there is a need for computer-aided-diagnosis (CAD) models for the automatic segmentation and classification of stroke on brain MRI. The heterogeneity of stroke pathogenesis, morphology, image acquisition modalities, sequences, and intralesional tissue signal intensity, as well as lesion-to-normal tissue contrast, pose significant challenges to the development of such systems. Machine learning (ML) is increasingly being used in predictive neuroimaging diagnosis and prognostication. This paper reviews image processing and machine learning techniques that have been applied to detect ischemic stroke on brain MRI, including details on image acquisition, pre-processing, techniques to segment, extraction of features, and classification into stroke types. The main objective of this work is to find the state-of-art machine learning techniques used to predict the ischemic stroke and their application in clinical set-up. The article selection is performed according to PRISMA guideline. The state-of-the-art on automated MRI stroke diagnosis, with a focus on machine learning, is discussed, along with its advantages and limitations. We found that the various machine learning models discussed in this article are able to detect the infarcts with an acceptable accuracy of 70-90%. However, no one has highlighted the time complexity to predict the stroke in the model developed, which is an important factor. The work concludes with proposals for future recommendations for building efficient and robust deep learning (DL) models for quantitative brain MRI analysis. In recent work, with the application of DL approaches, using large datasets to train the models has improved the detection accuracy and reduced computational complexity. We suggest that the design of a decision support system based on artificial intelligence (AI) and clinical data presenting symptoms is essential to support clinicians to accelerate diagnosis and timeous therapy in the emergency management of stroke.

摘要

磁共振成像(MRI)是诊断中风的标准工具,但其由专家进行的人工解读既费力又耗时。因此,需要计算机辅助诊断(CAD)模型来对脑部MRI上的中风进行自动分割和分类。中风发病机制、形态、图像采集方式、序列以及病灶内组织信号强度的异质性,连同病灶与正常组织的对比度,都给此类系统的开发带来了重大挑战。机器学习(ML)在预测性神经影像诊断和预后判断中的应用越来越广泛。本文综述了已应用于检测脑部MRI上缺血性中风的图像处理和机器学习技术,包括图像采集、预处理、分割技术、特征提取以及中风类型分类的详细信息。这项工作的主要目标是找出用于预测缺血性中风的先进机器学习技术及其在临床环境中的应用。文章的选取是根据PRISMA指南进行的。本文讨论了以机器学习为重点的自动化MRI中风诊断的最新进展,以及其优点和局限性。我们发现本文讨论的各种机器学习模型能够以70%至90%的可接受准确率检测梗死灶。然而,没有人强调所开发模型中预测中风的时间复杂性,而这是一个重要因素。工作最后针对构建用于定量脑MRI分析的高效且稳健的深度学习(DL)模型提出了未来建议。在最近的工作中,随着DL方法的应用,使用大型数据集训练模型提高了检测准确率并降低了计算复杂性。我们建议设计一个基于人工智能(AI)和呈现症状的临床数据的决策支持系统,对于在中风的急诊管理中支持临床医生加快诊断和及时治疗至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/4597de06f182/diagnostics-12-02535-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/5665e81d9730/diagnostics-12-02535-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/a7ecbd790038/diagnostics-12-02535-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/917662718c76/diagnostics-12-02535-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/9836af050f1b/diagnostics-12-02535-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/b4ae8d2f097c/diagnostics-12-02535-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/f8072c902987/diagnostics-12-02535-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/659bca4ad782/diagnostics-12-02535-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/4597de06f182/diagnostics-12-02535-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/5665e81d9730/diagnostics-12-02535-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/a7ecbd790038/diagnostics-12-02535-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/917662718c76/diagnostics-12-02535-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/9836af050f1b/diagnostics-12-02535-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/b4ae8d2f097c/diagnostics-12-02535-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/f8072c902987/diagnostics-12-02535-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/659bca4ad782/diagnostics-12-02535-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3180/9600234/4597de06f182/diagnostics-12-02535-g008.jpg

相似文献

[1]
Application of Machine Learning Techniques for Characterization of Ischemic Stroke with MRI Images: A Review.

Diagnostics (Basel). 2022-10-19

[2]
Computer-Aided Diagnosis of Various Diseases Using Ultrasonography Images.

Curr Med Imaging. 2023-3-6

[3]
Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review.

Front Mol Neurosci. 2022-10-4

[4]
AAPM task group report 273: Recommendations on best practices for AI and machine learning for computer-aided diagnosis in medical imaging.

Med Phys. 2023-2

[5]
Deep Learning Approaches Towards Skin Lesion Segmentation and Classification from Dermoscopic Images - A Review.

Curr Med Imaging. 2020

[6]
Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review.

Comput Biol Med. 2021-9

[7]
Machine learning identifies stroke features between species.

Theranostics. 2021

[8]
Artificial intelligence in ischemic stroke images: current applications and future directions.

Front Neurol. 2024-7-10

[9]
Research progress on deep learning in magnetic resonance imaging-based diagnosis and treatment of prostate cancer: a review on the current status and perspectives.

Front Oncol. 2023-6-13

[10]
Current and emerging artificial intelligence applications for pediatric abdominal imaging.

Pediatr Radiol. 2022-10

引用本文的文献

[1]
Evaluation of Siemens Healthineers' StrokeSegApp for automated diffusion and perfusion lesion segmentation in patients with ischemic stroke.

Front Neurol. 2025-1-24

[2]
Advancing Hydrogel-Based 3D Cell Culture Systems: Histological Image Analysis and AI-Driven Filament Characterization.

Biomedicines. 2025-1-15

[3]
Comprehensive Review: Machine and Deep Learning in Brain Stroke Diagnosis.

Sensors (Basel). 2024-7-4

[4]
Taxonomy of Acute Stroke: Imaging, Processing, and Treatment.

Diagnostics (Basel). 2024-5-19

[5]
Hemiplegia in acute ischemic stroke: A comprehensive review of case studies and the role of intravenous thrombolysis and mechanical thrombectomy.

Ibrain. 2024-1-13

[6]
Artificial Intelligence for Automated DWI/FLAIR Mismatch Assessment on Magnetic Resonance Imaging in Stroke: A Systematic Review.

Diagnostics (Basel). 2023-6-19

本文引用的文献

[1]
Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke.

Commun Med (Lond). 2021-12-16

[2]
Automated Object Detection in Experimental Data Using Combination of Unsupervised and Supervised Methods.

Front Physiol. 2022-4-6

[3]
Development and clinical application of a deep learning model to identify acute infarct on magnetic resonance imaging.

Sci Rep. 2022-2-9

[4]
Machine Learning-Based Approaches for Prediction of Patients' Functional Outcome and Mortality after Spontaneous Intracerebral Hemorrhage.

J Pers Med. 2022-1-14

[5]
Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019.

Lancet Neurol. 2021-10

[6]
Burden of Stroke in India During 1960 to 2018: A Systematic Review and Meta-Analysis of Community Based Surveys.

Neurol India. 2021

[7]
Automated Segmentation of Infarct Lesions in T1-Weighted MRI Scans Using Variational Mode Decomposition and Deep Learning.

Sensors (Basel). 2021-3-10

[8]
Artificial Intelligence and Acute Stroke Imaging.

AJNR Am J Neuroradiol. 2021-1

[9]
Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives.

Int J Mol Sci. 2020-10-15

[10]
Radiomics in medical imaging-"how-to" guide and critical reflection.

Insights Imaging. 2020-8-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索