Suppr超能文献

MIR 光谱特征在塑料中的应用,以实现工业回收领域的区分:II. 聚烯烃的具体案例。

MIR spectral characterization of plastic to enable discrimination in an industrial recycling context: II. Specific case of polyolefins.

机构信息

C2MA, IMT Mines Ales, Univ Montpellier, 7 Avenue Jules Renard 30100 Ales, France.

C2MA, IMT Mines Ales, Univ Montpellier, 7 Avenue Jules Renard 30100 Ales, France.

出版信息

Waste Manag. 2019 Oct;98:160-172. doi: 10.1016/j.wasman.2019.08.010. Epub 2019 Aug 23.

Abstract

Sorting at industrial scale is required to perform mechanical recycling of plastics in order to obtain properties that could be competitive with virgin polymers. As a matter of fact, the most part of the various types of plastic waste are not miscible and even compatible. Mid-Infrared (MIR) HyperSpectral Imagery (HSI) is viewed as one of the solutions to the problem of black plastic sorting. Many Waste of Electrical and Electronic Equipment (WEEE) plastics are black. Nowadays, these materials are difficult to sort at an industrial scale because the main used pigment to produce this color, carbon black, masks the Near-Infrared (NIR) spectra of polymers, the currently most used technology for acute sorting in industrial conditions. In this study, laboratory Fourier-Transform Infrared (FTIR) in Attenuated Total Reflection mode (ATR) has been used as a theoretical toolbox based on physical chemistry to help building an automated HSI discrimination despite its limited conditions, especially shorter wavelengths ranges. Weaker resolution and very short acquisition times are other HSI limitations. Helping fast and exhaustive laboratory characterizations of polymeric waste stocks is the other goal of this study. This study focusses on polyolefins as they represent the second biggest fraction of WEEE plastics (WEEP) after styrenics and since little quantities mixed to styrenics during mechanical recycling can lead to important decrease in mechanical properties. Twelve references were thus evaluated and compared between each other and with real waste samples to highlight spectral elements, which can enable differentiation. Charts compiling the signals of discussed polymers were built aiming to the same objective.

摘要

为了实现塑料的机械回收,需要进行工业规模的分拣,以获得具有竞争力的原始聚合物性能。事实上,各种类型的塑料废物大部分是不可混溶的,甚至是不兼容的。中红外(MIR)高光谱成像(HSI)被认为是解决黑色塑料分拣问题的一种方法。许多电子电气设备废物(WEEE)塑料是黑色的。如今,由于用于生产这种颜色的主要颜料——炭黑——掩盖了聚合物的近红外(NIR)光谱,而目前在工业条件下最常用的急性分拣技术就是 NIR,这些材料很难在工业规模上进行分拣。在这项研究中,实验室傅里叶变换红外(FTIR)衰减全反射模式(ATR)被用作一个理论工具箱,基于物理化学来帮助建立一个自动化的 HSI 识别系统,尽管它的条件有限,特别是在较短的波长范围内。HSI 的其他限制因素包括较弱的分辨率和非常短的采集时间。帮助快速和详尽地对聚合物废料进行实验室特性分析也是本研究的另一个目标。本研究集中于聚烯烃,因为它们是 WEEE 塑料(WEEP)的第二大组成部分,仅次于苯乙烯塑料,而且在机械回收过程中与苯乙烯塑料混合的少量聚烯烃会导致机械性能显著下降。因此,评估了 12 个参考样品,并将它们相互比较,以及与实际废料样品进行比较,以突出能够实现区分的光谱元素。为了实现相同的目标,还构建了讨论聚合物的信号图表。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验