Suppr超能文献

化学计量学模型预测持久性有机污染物(POPs)的大气半衰期。

Chemometric modeling to predict air half-life of persistent organic pollutants (POPs).

机构信息

Department of Pharmacoinformatics, National Institute of Pharmaceutical Educational and Research (NIPER), Chunilal Bhawan, 168, Manikata Main Road, 700054, Kolkata, India.

Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156, Milano, Italy.

出版信息

J Hazard Mater. 2020 Jan 15;382:121035. doi: 10.1016/j.jhazmat.2019.121035. Epub 2019 Aug 19.

Abstract

We have reported here a quantitative structure-property relationship (QSPR) model for prediction of air half-life of organic chemicals using a dataset of 302 diverse organic chemicals employing only two-dimensional descriptors with definite physicochemical meaning in order to avoid the computational complexity for higher dimensional molecular descriptors. The developed model was rigorously validated using the internationally accepted internal and external validation metrics. The final partial least squares (PLS) regression model obtained at three latent variables comprises six simple and interpretable 2D descriptors. The simple and highly robust model with good quality of predictions explains 66% for the variance of the training set (R) (64% in terms of LOO variance (Q)) and 76% for test set variance (R) (prediction quality). This model might be applicable for data gap filling for determination of POPs in the environment, in case of new or untested chemicals falling within the applicability domain of the model. In general, the model indicates that the air half-life of organic chemicals increases with presence of H-bond acceptor atoms, number of halogen atoms and presence of the R-CH-X fragment and lipophilicity, and decreases with presence of a number of halogens on ring C(sp3) (substitution of halogen atoms on a ring).

摘要

我们在这里报告了一个定量构效关系(QSPR)模型,用于使用 302 种不同的有机化合物数据集,仅使用具有明确物理化学意义的二维描述符来预测有机化合物的空气半衰期,以避免更高维分子描述符的计算复杂性。该模型使用国际公认的内部和外部验证指标进行了严格验证。在三个潜在变量下获得的最终偏最小二乘(PLS)回归模型包含六个简单且可解释的 2D 描述符。该模型简单且稳健,具有良好的预测质量,解释了训练集方差的 66%(LOO 方差(Q)的 64%)和测试集方差的 76%(R)(预测质量)。在模型适用性范围内,对于新的或未经测试的属于持久性有机污染物(POPs)的化学物质,可以使用该模型进行数据填补,以确定环境中的持久性有机污染物。一般来说,该模型表明,有机化合物的空气半衰期随 H 键接受原子、卤素原子数量和 R-CH-X 片段以及脂溶性的存在而增加,随环 C(sp3)上卤素数量的增加而减少(卤素原子取代环上的原子)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验