Suppr超能文献

新型溶剂选择方案,用于幼虫模型中的 检测。

New solvent options for assays in the larvae model.

机构信息

Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España.

ESI International Chair@CEU-UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas. Universidad Cardenal Herrera-CEU , Valencia , España.

出版信息

Virulence. 2019 Dec;10(1):776-782. doi: 10.1080/21505594.2019.1659663.

Abstract

Experimentation in mammals is a long and expensive process in which ethical aspects must be considered, which has led the scientific community to develop alternative models such as that of . This model is a cost and time effective option to act as a filter in the drug discovery process. The main limitation of this model is the lack of variety in the solvents used to administer compounds, which limits the compounds that can be studied using this model. Five aqueous (DMSO, MeOH, acetic acid, HCl and NaOH) and four non-aqueous (olive oil, isopropyl myristate, benzyl benzoate and ethyl oleate) solvents was assessed to be used as vehicles for toxicity and antimicrobial activity assays. All the tested solvents were innocuous at the tested concentrations except for NaOH, which can be used at a maximum concentration of 0.5 M. The toxicity of two additional compounds, 5-aminosalicylic acid and DDT, was also assessed. The results obtained allow for the testing of a broader range of compounds using wax moth larvae. This model appears as an alternative to mammal models, by acting as a filter in the drug development process and reducing costs and time invested in new drugs.

摘要

哺乳动物实验是一个漫长而昂贵的过程,其中必须考虑到伦理方面的问题,这导致科学界开发了替代模型,如 。这种模型是在药物发现过程中作为筛选器的一种具有成本效益和时间效益的选择。这种模型的主要限制是用于给药化合物的溶剂种类有限,这限制了可以使用该模型研究的化合物种类。评估了五种水性(DMSO、MeOH、乙酸、HCl 和 NaOH)和四种非水性(橄榄油、肉豆蔻异丙酯、苯甲酸苄酯和油酸乙酯)溶剂作为毒性和抗菌活性测定的载体。除了 NaOH 之外,所有测试的溶剂在测试浓度下都是无害的,NaOH 的最大使用浓度为 0.5 M。还评估了另外两种化合物,5-氨基水杨酸和滴滴涕的毒性。所得结果允许使用蜡螟幼虫测试更广泛范围的化合物。该模型通过在药物开发过程中充当筛选器并降低新药投资的成本和时间,成为哺乳动物模型的替代方案。

相似文献

1
New solvent options for assays in the larvae model.
Virulence. 2019 Dec;10(1):776-782. doi: 10.1080/21505594.2019.1659663.
3
Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals.
Chemosphere. 2018 May;198:469-472. doi: 10.1016/j.chemosphere.2018.01.175. Epub 2018 Feb 6.
5
Evaluation of Galleria mellonella larvae as an in vivo model for assessing the relative toxicity of food preservative agents.
Cell Biol Toxicol. 2016 Jun;32(3):209-16. doi: 10.1007/s10565-016-9329-x. Epub 2016 Apr 27.
7
: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions.
Antibiotics (Basel). 2021 Dec 17;10(12):1545. doi: 10.3390/antibiotics10121545.
9
Wax moth larva (Galleria mellonella): an in vivo model for assessing the efficacy of antistaphylococcal agents.
J Antimicrob Chemother. 2011 Aug;66(8):1785-90. doi: 10.1093/jac/dkr198. Epub 2011 May 28.

引用本文的文献

1
Dissecting the inhibitory activity of Burkholderia orbicola against Gram-positive and - negative multidrug-resistant bacteria.
PLoS One. 2025 Jun 30;20(6):e0326906. doi: 10.1371/journal.pone.0326906. eCollection 2025.
3
New Antimicrobial Cyclodepsipeptides from a Freshwater Fungus from the Sierra Madre Oriental in Mexico.
ACS Omega. 2025 Jan 29;10(5):5087-5096. doi: 10.1021/acsomega.4c10990. eCollection 2025 Feb 11.
4
Overview of Computational Toxicology Methods Applied in Drug and Green Chemical Discovery.
J Xenobiot. 2024 Dec 4;14(4):1901-1918. doi: 10.3390/jox14040101.
5
The Virtuous Model for Scientific Experimentation.
Antibiotics (Basel). 2023 Mar 3;12(3):505. doi: 10.3390/antibiotics12030505.
6
Galleria mellonella-intracellular bacteria pathogen infection models: the ins and outs.
FEMS Microbiol Rev. 2023 Mar 10;47(2). doi: 10.1093/femsre/fuad011.
7
: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions.
Antibiotics (Basel). 2021 Dec 17;10(12):1545. doi: 10.3390/antibiotics10121545.

本文引用的文献

2
Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals.
Chemosphere. 2018 May;198:469-472. doi: 10.1016/j.chemosphere.2018.01.175. Epub 2018 Feb 6.
3
New 1,5 and 2,5-disubstituted tetrazoles-dependent activity towards surface barrier of Candida albicans.
Eur J Med Chem. 2018 Feb 10;145:124-139. doi: 10.1016/j.ejmech.2017.11.089. Epub 2017 Dec 30.
4
In vivo activity of fluconazole/tetracycline combinations in Galleria mellonella with resistant Candida albicans infection.
J Glob Antimicrob Resist. 2018 Jun;13:74-80. doi: 10.1016/j.jgar.2017.11.011. Epub 2017 Nov 27.
5
Caffeine administration alters the behaviour and development of Galleria mellonella larvae.
Neurotoxicol Teratol. 2017 Nov;64:37-44. doi: 10.1016/j.ntt.2017.10.002. Epub 2017 Oct 9.
6
Activity of 3'-hydroxychalcone against Cryptococcus gattii and toxicity, and efficacy in alternative animal models.
Future Microbiol. 2017 Oct;12:1123-1134. doi: 10.2217/fmb-2017-0062. Epub 2017 Sep 6.
8
Humoral immune response of Galleria mellonella after repeated infection with Bacillus thuringiensis.
J Invertebr Pathol. 2017 Oct;149:87-96. doi: 10.1016/j.jip.2017.08.008. Epub 2017 Aug 10.
9
Activity of a novel protonophore against methicillin-resistant Staphylococcus aureus.
Future Med Chem. 2017 Aug;9(12):1401-1411. doi: 10.4155/fmc-2017-0047. Epub 2017 Aug 3.
10
In vitro and In vivo Activity of Theaflavin-Epicatechin Combinations versus Multidrug-Resistant Acinetobacter baumannii.
Infect Dis Ther. 2017 Sep;6(3):435-442. doi: 10.1007/s40121-017-0161-2. Epub 2017 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验