Agricultural Research Service, US Department of Agriculture, Urbana, IL 61801.
Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801.
Proc Natl Acad Sci U S A. 2019 Sep 10;116(37):18723-18731. doi: 10.1073/pnas.1812916116. Epub 2019 Aug 26.
Rubisco activase (Rca) is phosphorylated at threonine-78 (Thr78) in low light and in the dark, suggesting a potential regulatory role in photosynthesis, but this has not been directly tested. To do so, we transformed an -knockdown mutant largely lacking redox regulation with wild-type Rca-β or Rca-β with Thr78-to-Ala (T78A) or Thr78-to-Ser (T78S) site-directed mutations. Interestingly, the T78S mutant was hyperphosphorylated at the Ser78 site relative to Thr78 of the Rca-β wild-type control, as evidenced by immunoblotting with custom antibodies and quantitative mass spectrometry. Moreover, plants expressing the T78S mutation had reduced photosynthesis and quantum efficiency of photosystem II (ϕ) and reduced growth relative to control plants expressing wild-type Rca-β under all conditions tested. Gene expression was also altered in a manner consistent with reduced growth. In contrast, plants expressing Rca-β with the phospho-null T78A mutation had faster photosynthetic induction kinetics and increased ϕ relative to Rca-β controls. While expression of the wild-type Rca-β or the T78A mutant fully rescued the slow-growth phenotype of the knockdown mutant grown in a square-wave light regime, the T78A mutants grew faster than the Rca-β control plants at low light (30 µmol photons m s) and in a fluctuating low-light/high-light environment. Collectively, these results suggest that phosphorylation of Thr78 (or Ser78 in the T78S mutant) plays a negative regulatory role in vivo and provides an explanation for the absence of Ser at position 78 in terrestrial plant species.
核酮糖-1,5-二磷酸羧化酶/加氧酶激活酶(Rca)在低光和黑暗中于苏氨酸-78(Thr78)处发生磷酸化,表明其在光合作用中可能具有调节作用,但这尚未得到直接验证。为了验证这一点,我们将一个主要缺乏氧化还原调节的 - 敲低突变体与野生型 Rca-β 或 Thr78 突变为丙氨酸(T78A)或苏氨酸(T78S)的 Rca-β 进行了转化。有趣的是,与 Rca-β 野生型对照相比,T78S 突变体在 Ser78 位点处的磷酸化程度更高,这一点通过使用定制抗体和定量质谱进行免疫印迹得到了证明。此外,与表达野生型 Rca-β 的对照植物相比,表达 T78S 突变的植物的光合作用和光系统 II(ϕ)量子效率降低,并且在所有测试条件下的生长速度都降低。基因表达也发生了变化,与生长速度降低一致。相比之下,与 Rca-β 对照相比,表达磷酸化缺失的 T78A 突变体的光合作用诱导动力学更快,并且 ϕ 增加。虽然表达野生型 Rca-β 或 T78A 突变体完全挽救了在方波光条件下生长的敲低突变体的生长缓慢表型,但 T78A 突变体在低光(30 µmol photons m s)和波动的低光/高光环境下比 Rca-β 对照植物生长更快。总的来说,这些结果表明 Thr78 的磷酸化(或 T78S 突变体中的 Ser78)在体内发挥负调节作用,并解释了陆地植物物种中 78 位丝氨酸缺失的原因。