Norwegian Institute of Public Health, Oslo, Norway.
Eur J Epidemiol. 2019 Oct;34(10):927-938. doi: 10.1007/s10654-019-00550-1. Epub 2019 Aug 26.
Self-selection into prospective cohort studies and loss to follow-up can cause biased exposure-outcome association estimates. Previous investigations illustrated that such biases can be small in large prospective cohort studies. The structural approach to selection bias shows that general statements about bias are not possible for studies that investigate multiple exposures and outcomes, and that inverse probability of participation weighting (IPPW) but not adjustment for participation predictors generally reduces bias from self-selection and loss to follow-up. We propose to substantiate assumptions in structural models of selection bias through calculation of genetic correlations coefficients between participation predictors, outcome, and exposure, and to estimate a lower bound for bias due to self-selection and loss to follow-up by comparing effect estimates from IPP weighted and unweighted analyses. This study used data from the Norwegian Mother and Child Cohort Study and the Medical Birth Registry of Norway. Using the example of risk factors for ADHD, we find that genetic correlations between participation predictors, exposures, and outcome suggest the presence of bias. The comparison of exposure-outcome associations from regressions with and without IPPW revealed meaningful deviations. Assessment of selection bias for entire multi-exposure multi-outcome cohort studies is not possible. Instead, it has to be assessed and controlled on a case-by-case basis.
前瞻性队列研究中的自我选择和随访丢失可能导致暴露-结局关联估计的偏差。以前的研究表明,在大型前瞻性队列研究中,这种偏差可能很小。选择偏差的结构方法表明,对于研究多种暴露和结局的研究,不可能对偏差做出一般性的陈述,并且逆概率参与加权(IPPW)而不是调整参与预测因子通常可以减少自我选择和随访丢失引起的偏差。我们建议通过计算参与预测因子、结局和暴露之间的遗传相关系数,来证实选择偏差结构模型中的假设,并通过比较 IPP 加权和未加权分析的效应估计值,来估计由于自我选择和随访丢失引起的偏差的下限。本研究使用了挪威母亲和儿童队列研究以及挪威医学出生登记处的数据。使用 ADHD 风险因素的例子,我们发现参与预测因子、暴露和结局之间的遗传相关性表明存在偏差。有和没有 IPPW 的回归中暴露-结局关联的比较显示出有意义的偏差。对整个多暴露多结局队列研究进行选择偏差评估是不可能的。相反,必须逐个案例进行评估和控制。