Bitencourt-Ferreira Gabriela, Veit-Acosta Martina, de Azevedo Walter Filgueira
Escola de Ciências da Saúde, Pontifícia Universidade Católica do Rio Grande do Sul-PUCRS, Porto Alegre, RS, Brazil.
Methods Mol Biol. 2019;2053:67-77. doi: 10.1007/978-1-4939-9752-7_5.
Computational analysis of protein-ligand interactions is of pivotal importance for drug design. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule as a ligand to the binding site of a protein target. Considering scoring functions available in docking programs such as AutoDock4, AutoDock Vina, and Molegro Virtual Docker, we could say that they all rely on equations that sum each type of protein-ligand interactions to model the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. In this chapter, we present the main physics concepts necessary to understand electrostatics interactions relevant to molecular recognition of a ligand by the binding pocket of a protein target. Moreover, we analyze the electrostatic potential energy for an ensemble of structures to highlight the main features related to the importance of this interaction for binding affinity.
蛋白质-配体相互作用的计算分析对于药物设计至关重要。配体结合能的评估使我们能够初步了解一种小有机分子作为蛋白质靶标结合位点配体的潜力。考虑到诸如AutoDock4、AutoDock Vina和Molegro Virtual Docker等对接程序中可用的评分函数,我们可以说它们都依赖于对每种蛋白质-配体相互作用类型进行求和的方程来模拟结合亲和力。大多数评分函数都考虑了涉及蛋白质和配体的静电相互作用。在本章中,我们介绍理解与蛋白质靶标结合口袋对配体分子识别相关的静电相互作用所需的主要物理概念。此外,我们分析了一组结构的静电势能,以突出与这种相互作用对结合亲和力的重要性相关的主要特征。