Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Ul. Żwirki i Wigury 101, 02-089 Warszawa, Poland.
Molecules. 2021 Jun 24;26(13):3872. doi: 10.3390/molecules26133872.
Computational analysis of protein-ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse of the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions, such as in docking programs, all rely on equations that sum each type of protein-ligand interactions in order to predict the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions constitute one of the most important part of total interactions between macromolecules. Unlike dispersion forces, they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this study, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and darunavir) were analyzed by using charge densities from the transferable aspherical-atom University at Buffalo Databank (UBDB). Moreover, we analyzed the electrostatic interaction energy for an ensemble of structures, using molecular dynamic simulations to highlight the main features of electrostatic interactions important for binding affinity.
蛋白质-配体相互作用的计算分析对于药物发现至关重要。评估配体结合能使我们能够一窥小分子作为蛋白质靶标结合位点配体的潜力。现有的评分函数,如对接程序中的评分函数,都依赖于对每种类型的蛋白质-配体相互作用进行求和的方程,以预测结合亲和力。大多数评分函数都考虑涉及蛋白质和配体的静电相互作用。静电相互作用是大分子之间总相互作用的最重要组成部分之一。与色散力不同,它们具有很强的方向性,因此主导着晶体和生物复合物中分子堆积的性质,并对相关酶抑制剂的抑制强度差异有显著贡献。在这项研究中,使用来自可转移非球原子布法罗大学数据库(UBDB)的电荷密度分析了 HIV-1 蛋白酶与抑制剂分子(JE-2147 和达芦那韦)的复合物。此外,我们使用分子动力学模拟分析了一组结构的静电相互作用能,以突出对结合亲和力重要的静电相互作用的主要特征。