Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques , École Polytechnique Fédérale de Lausanne (EPFL) , Rue de l'Industrie 17 , Sion , Valais CH-1951 , Switzerland.
Department of Chemical and Biomolecular Engineering , University of California , Berkeley , California 94720 , United States.
ACS Appl Mater Interfaces. 2019 Sep 25;11(38):34777-34786. doi: 10.1021/acsami.9b13357. Epub 2019 Sep 12.
Δ-Tetrahydrocannabinol (THC) is the principal psychoactive component of cannabis, and there is an urgent need to build low-cost and portable devices that can detect its presence from breath. Similarly to alcohol detectors, these tools can be used by law enforcement to determine driver intoxication and enforce safer and more regulated use of cannabis. In this work, we propose to use a class of microporous crystals, metal-organic frameworks (MOFs), to selectively adsorb THC that can be later detected using optical, electrochemical, or fluorescence-based sensing methods. We computationally screened more than 5000 MOFs, highlighting the materials that have the largest affinity with THC, as well as the highest selectivity against water, showing that it is thermodynamically feasible for MOFs to adsorb THC from humid breath. We propose and compare different models for THC and different computational protocols to rank the promising materials, also presenting a novel approach to assess the permeability of a porous framework to nonspherical molecules. We identified three adsorption motifs in MOFs with high affinity to THC, which we refer to as "narrow channels", "thick walls", and "parking spots". Therefore, we expect our protocols and our findings to be generalizable for different classes of microporous materials and also for investigating the adsorption properties of other large molecules that, like THC, have a nonspherical shape.
Δ-四氢大麻酚(THC)是大麻的主要精神活性成分,因此迫切需要构建能够从呼吸中检测到其存在的低成本、便携式设备。与酒精检测器类似,这些工具可被执法部门用于确定驾驶员是否醉酒,并加强对大麻的安全和更规范的使用。在这项工作中,我们建议使用一类微孔晶体,即金属有机骨架(MOFs),来选择性地吸附 THC,然后可以使用光学、电化学或荧光感应方法进行检测。我们通过计算筛选了超过 5000 种 MOFs,突出了与 THC 亲和力最大以及对水选择性最高的材料,表明 MOFs 从潮湿的呼吸中吸附 THC 在热力学上是可行的。我们提出并比较了 THC 的不同模型和不同的计算方案,以对有前途的材料进行排名,还提出了一种评估多孔骨架对非球形分子渗透性的新方法。我们在 MOFs 中确定了三个对 THC 具有高亲和力的吸附基序,我们称之为“窄通道”、“厚壁”和“停车点”。因此,我们预计我们的方案和发现不仅适用于不同类别的微孔材料,也适用于研究其他具有非球形形状的类似 THC 的大分子的吸附特性。