Suppr超能文献

双因素模型下降维方法在CAT项目选择中的应用

Application of Dimension Reduction to CAT Item Selection Under the Bifactor Model.

作者信息

Mao Xiuzhen, Zhang Jiahui, Xin Tao

机构信息

Sichuan Normal University, Chengdu, China.

Michigan State University, East Lansing, MI, USA.

出版信息

Appl Psychol Meas. 2019 Sep;43(6):419-434. doi: 10.1177/0146621618813086. Epub 2018 Nov 27.

Abstract

Multidimensional computerized adaptive testing (MCAT) based on the bifactor model is suitable for tests with multidimensional bifactor measurement structures. Several item selection methods that proved to be more advantageous than the maximum Fisher information method are not practical for bifactor MCAT due to time-consuming computations resulting from high dimensionality. To make them applicable in bifactor MCAT, dimension reduction is applied to four item selection methods, which are the posterior-weighted Fisher D-optimality (PDO) and three non-Fisher information-based methods-posterior expected Kullback-Leibler information (PKL), continuous entropy (CE), and mutual information (MI). They were compared with the Bayesian D-optimality (BDO) method in terms of estimation precision. When both the general and group factors are the measurement objectives, BDO, PDO, CE, and MI perform equally well and better than PKL. When the group factors represent nuisance dimensions, MI and CE perform the best in estimating the general factor, followed by the BDO, PDO, and PKL. How the bifactor pattern and test length affect estimation accuracy was also discussed.

摘要

基于双因素模型的多维计算机自适应测试(MCAT)适用于具有多维双因素测量结构的测试。几种已被证明比最大费舍尔信息量法更具优势的项目选择方法,由于高维度导致计算耗时,在双因素MCAT中并不实用。为使其适用于双因素MCAT,对四种项目选择方法进行了降维处理,这四种方法分别是后验加权费舍尔D最优性(PDO)以及三种基于非费舍尔信息量的方法——后验期望库尔贝克-莱布勒信息量(PKL)、连续熵(CE)和互信息(MI)。在估计精度方面,将它们与贝叶斯D最优性(BDO)方法进行了比较。当一般因素和组因素均为测量目标时,BDO、PDO、CE和MI的表现同样出色,且优于PKL。当组因素代表干扰维度时,MI和CE在估计一般因素方面表现最佳,其次是BDO、PDO和PKL。还讨论了双因素模式和测试长度如何影响估计准确性。

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验