Department of Education, University of California, Los Angeles, CA 90095-1521, USA.
Psychol Methods. 2011 Sep;16(3):221-48. doi: 10.1037/a0023350.
Full-information item bifactor analysis is an important statistical method in psychological and educational measurement. Current methods are limited to single-group analysis and inflexible in the types of item response models supported. We propose a flexible multiple-group item bifactor analysis framework that supports a variety of multidimensional item response theory models for an arbitrary mixing of dichotomous, ordinal, and nominal items. The extended item bifactor model also enables the estimation of latent variable means and variances when data from more than 1 group are present. Generalized user-defined parameter restrictions are permitted within or across groups. We derive an efficient full-information maximum marginal likelihood estimator. Our estimation method achieves substantial computational savings by extending Gibbons and Hedeker's (1992) bifactor dimension reduction method so that the optimization of the marginal log-likelihood requires only 2-dimensional integration regardless of the dimensionality of the latent variables. We use simulation studies to demonstrate the flexibility and accuracy of the proposed methods. We apply the model to study cross-country differences, including differential item functioning, using data from a large international education survey on mathematics literacy.
全信息项目双因子分析是心理与教育测量中的一种重要统计方法。目前的方法仅限于单组分析,并且所支持的项目反应模型的类型不灵活。我们提出了一个灵活的多组项目双因子分析框架,支持各种多维项目反应理论模型,可任意混合二项式、有序和名义项目。扩展的项目双因子模型还允许在存在多个组的数据时估计潜在变量的均值和方差。允许在组内或组间进行广义用户定义的参数限制。我们推导出了一种有效的全信息最大边际似然估计器。我们的估计方法通过扩展 Gibbons 和 Hedeker(1992)的双因子降维方法,实现了大量的计算节省,因此优化边际对数似然只需要 2 维积分,而与潜在变量的维数无关。我们使用模拟研究来证明所提出方法的灵活性和准确性。我们应用该模型研究了包括差异项目功能在内的跨国差异,使用了来自一项大型国际数学素养教育调查的数据。