Suppr超能文献

广义全信息项目双因素分析。

Generalized full-information item bifactor analysis.

机构信息

Department of Education, University of California, Los Angeles, CA 90095-1521, USA.

出版信息

Psychol Methods. 2011 Sep;16(3):221-48. doi: 10.1037/a0023350.

Abstract

Full-information item bifactor analysis is an important statistical method in psychological and educational measurement. Current methods are limited to single-group analysis and inflexible in the types of item response models supported. We propose a flexible multiple-group item bifactor analysis framework that supports a variety of multidimensional item response theory models for an arbitrary mixing of dichotomous, ordinal, and nominal items. The extended item bifactor model also enables the estimation of latent variable means and variances when data from more than 1 group are present. Generalized user-defined parameter restrictions are permitted within or across groups. We derive an efficient full-information maximum marginal likelihood estimator. Our estimation method achieves substantial computational savings by extending Gibbons and Hedeker's (1992) bifactor dimension reduction method so that the optimization of the marginal log-likelihood requires only 2-dimensional integration regardless of the dimensionality of the latent variables. We use simulation studies to demonstrate the flexibility and accuracy of the proposed methods. We apply the model to study cross-country differences, including differential item functioning, using data from a large international education survey on mathematics literacy.

摘要

全信息项目双因子分析是心理与教育测量中的一种重要统计方法。目前的方法仅限于单组分析,并且所支持的项目反应模型的类型不灵活。我们提出了一个灵活的多组项目双因子分析框架,支持各种多维项目反应理论模型,可任意混合二项式、有序和名义项目。扩展的项目双因子模型还允许在存在多个组的数据时估计潜在变量的均值和方差。允许在组内或组间进行广义用户定义的参数限制。我们推导出了一种有效的全信息最大边际似然估计器。我们的估计方法通过扩展 Gibbons 和 Hedeker(1992)的双因子降维方法,实现了大量的计算节省,因此优化边际对数似然只需要 2 维积分,而与潜在变量的维数无关。我们使用模拟研究来证明所提出方法的灵活性和准确性。我们应用该模型研究了包括差异项目功能在内的跨国差异,使用了来自一项大型国际数学素养教育调查的数据。

相似文献

1
Generalized full-information item bifactor analysis.广义全信息项目双因素分析。
Psychol Methods. 2011 Sep;16(3):221-48. doi: 10.1037/a0023350.
2
Limited-information goodness-of-fit testing of hierarchical item factor models.层次项目因子模型的有限信息拟合优度检验。
Br J Math Stat Psychol. 2013 May;66(2):245-76. doi: 10.1111/j.2044-8317.2012.02050.x. Epub 2012 May 29.
7
Marginal likelihood inference for a model for item responses and response times.项目反应和反应时间模型的边缘似然推断。
Br J Math Stat Psychol. 2010 Nov;63(Pt 3):603-26. doi: 10.1348/000711009X481360. Epub 2010 Jan 28.

引用本文的文献

7
A General Theorem and Proof for the Identification of Composed CFA Models.组合 CFA 模型识别的一个通用定理及证明。
Psychometrika. 2023 Dec;88(4):1334-1353. doi: 10.1007/s11336-023-09933-6. Epub 2023 Sep 19.
8
A Testlet Diagnostic Classification Model with Attribute Hierarchies.具有属性层次结构的测试题诊断分类模型
Appl Psychol Meas. 2023 May;47(3):183-199. doi: 10.1177/01466216231165315. Epub 2023 Mar 21.

本文引用的文献

4
NOHARM: Least Squares Item Factor Analysis.无害:最小二乘项目因素分析。
Multivariate Behav Res. 1988 Apr 1;23(2):267-9. doi: 10.1207/s15327906mbr2302_9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验