Suppr超能文献

基于深度学习的编码孔径相机低质量视频目标跟踪与分类

Deep Learning-Based Target Tracking and Classification for Low Quality Videos Using Coded Aperture Cameras.

作者信息

Kwan Chiman, Chou Bryan, Yang Jonathan, Rangamani Akshay, Tran Trac, Zhang Jack, Etienne-Cummings Ralph

机构信息

Applied Research LLC, Rockville, MD 20850, USA.

Google, Inc., Mountain View, CA 94043, USA.

出版信息

Sensors (Basel). 2019 Aug 26;19(17):3702. doi: 10.3390/s19173702.

Abstract

Compressive sensing has seen many applications in recent years. One type of compressive sensing device is the Pixel-wise Code Exposure (PCE) camera, which has low power consumption and individual control of pixel exposure time. In order to use PCE cameras for practical applications, a time consuming and lossy process is needed to reconstruct the original frames. In this paper, we present a deep learning approach that directly performs target tracking and classification in the compressive measurement domain without any frame reconstruction. In particular, we propose to apply You Only Look Once (YOLO) to detect and track targets in the frames and we propose to apply Residual Network (ResNet) for classification. Extensive simulations using low quality optical and mid-wave infrared (MWIR) videos in the SENSIAC database demonstrated the efficacy of our proposed approach.

摘要

近年来,压缩感知已得到广泛应用。一种压缩感知设备是逐像素编码曝光(PCE)相机,它具有低功耗和对像素曝光时间的单独控制。为了将PCE相机用于实际应用,需要一个耗时且有损的过程来重建原始帧。在本文中,我们提出了一种深度学习方法,该方法无需任何帧重建即可在压缩测量域中直接执行目标跟踪和分类。具体而言,我们建议应用You Only Look Once(YOLO)来检测和跟踪帧中的目标,并建议应用残差网络(ResNet)进行分类。使用SENSIAC数据库中的低质量光学和中波红外(MWIR)视频进行的大量模拟证明了我们提出的方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/269b/6749400/1b06333f3036/sensors-19-03702-g0A1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验