Kwan Chiman, Chou Bryan, Yang Jonathan, Rangamani Akshay, Tran Trac, Zhang Jack, Etienne-Cummings Ralph
Applied Research LLC, Rockville, MD 20850, USA.
Google, Inc., Mountain View, CA 94043, USA.
Sensors (Basel). 2019 Aug 26;19(17):3702. doi: 10.3390/s19173702.
Compressive sensing has seen many applications in recent years. One type of compressive sensing device is the Pixel-wise Code Exposure (PCE) camera, which has low power consumption and individual control of pixel exposure time. In order to use PCE cameras for practical applications, a time consuming and lossy process is needed to reconstruct the original frames. In this paper, we present a deep learning approach that directly performs target tracking and classification in the compressive measurement domain without any frame reconstruction. In particular, we propose to apply You Only Look Once (YOLO) to detect and track targets in the frames and we propose to apply Residual Network (ResNet) for classification. Extensive simulations using low quality optical and mid-wave infrared (MWIR) videos in the SENSIAC database demonstrated the efficacy of our proposed approach.
近年来,压缩感知已得到广泛应用。一种压缩感知设备是逐像素编码曝光(PCE)相机,它具有低功耗和对像素曝光时间的单独控制。为了将PCE相机用于实际应用,需要一个耗时且有损的过程来重建原始帧。在本文中,我们提出了一种深度学习方法,该方法无需任何帧重建即可在压缩测量域中直接执行目标跟踪和分类。具体而言,我们建议应用You Only Look Once(YOLO)来检测和跟踪帧中的目标,并建议应用残差网络(ResNet)进行分类。使用SENSIAC数据库中的低质量光学和中波红外(MWIR)视频进行的大量模拟证明了我们提出的方法的有效性。