University of Chinese Academy of Sciences, Beijing, China.
Institute of Computing Technology of the Chinese Academy of Sciences, Beijing, China.
BMC Bioinformatics. 2019 Aug 28;20(1):443. doi: 10.1186/s12859-019-3003-2.
Cryo-electron tomography (Cryo-ET) is an imaging technique used to generate three-dimensional structures of cellular macromolecule complexes in their native environment. Due to developing cryo-electron microscopy technology, the image quality of three-dimensional reconstruction of cryo-electron tomography has greatly improved. However, cryo-ET images are characterized by low resolution, partial data loss and low signal-to-noise ratio (SNR). In order to tackle these challenges and improve resolution, a large number of subtomograms containing the same structure needs to be aligned and averaged. Existing methods for refining and aligning subtomograms are still highly time-consuming, requiring many computationally intensive processing steps (i.e. the rotations and translations of subtomograms in three-dimensional space).
In this article, we propose a Stochastic Average Gradient (SAG) fine-grained alignment method for optimizing the sum of dissimilarity measure in real space. We introduce a Message Passing Interface (MPI) parallel programming model in order to explore further speedup.
We compare our stochastic average gradient fine-grained alignment algorithm with two baseline methods, high-precision alignment and fast alignment. Our SAG fine-grained alignment algorithm is much faster than the two baseline methods. Results on simulated data of GroEL from the Protein Data Bank (PDB ID:1KP8) showed that our parallel SAG-based fine-grained alignment method could achieve close-to-optimal rigid transformations with higher precision than both high-precision alignment and fast alignment at a low SNR (SNR=0.003) with tilt angle range ±60 or ±40. For the experimental subtomograms data structures of GroEL and GroEL/GroES complexes, our parallel SAG-based fine-grained alignment can achieve higher precision and fewer iterations to converge than the two baseline methods.
低温电子断层扫描(Cryo-ET)是一种成像技术,用于在其天然环境中生成细胞大分子复合物的三维结构。由于开发了低温电子显微镜技术,Cryo-ET 的三维重建图像质量得到了极大的提高。然而,Cryo-ET 图像的特点是分辨率低、部分数据丢失和信噪比(SNR)低。为了解决这些挑战并提高分辨率,需要对包含相同结构的大量子断层进行对齐和平均。现有的细化和对齐子断层的方法仍然非常耗时,需要许多计算密集型的处理步骤(即三维空间中子断层的旋转和平移)。
在本文中,我们提出了一种随机平均梯度(SAG)细粒度对齐方法,用于优化实空间中相似度度量的和。我们引入了消息传递接口(MPI)并行编程模型,以进一步探索加速。
我们将我们的随机平均梯度细粒度对齐算法与两种基线方法,高精度对齐和快速对齐进行了比较。我们的 SAG 细粒度对齐算法比两种基线方法快得多。在来自蛋白质数据库(PDB ID:1KP8)的 GroEL 的模拟数据上的结果表明,我们的基于并行 SAG 的细粒度对齐方法可以在低 SNR(SNR=0.003)下以±60 或±40 的倾斜角度范围实现接近最佳的刚性变换,并且具有比高精度对齐和快速对齐更高的精度。对于 GroEL 和 GroEL/GroES 复合物的实验子断层数据结构,我们的基于并行 SAG 的细粒度对齐可以比两种基线方法实现更高的精度和更少的迭代次数来收敛。