Department of Developmental Psychology, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain.
Department of Telematics Engineering, University of Vigo, Vigo, Spain.
Int Psychogeriatr. 2020 Mar;32(3):381-392. doi: 10.1017/S1041610219001030.
To use a Machine Learning (ML) approach to compare Neuropsychiatric Symptoms (NPS) in participants of a longitudinal study who developed dementia and those who did not.
Mann-Whitney U and ML analysis. Nine ML algorithms were evaluated using a 10-fold stratified validation procedure. Performance metrics (accuracy, recall, F-1 score, and Cohen's kappa) were computed for each algorithm, and graphic metrics (ROC and precision-recall curves) and features analysis were computed for the best-performing algorithm.
Primary care health centers.
128 participants: 78 cognitively unimpaired and 50 with MCI.
Diagnosis at baseline, months from the baseline assessment until the 3rd follow-up or development of dementia, gender, age, Charlson Comorbidity Index, Neuropsychiatric Inventory-Questionnaire (NPI-Q) individual items, NPI-Q total severity, and total stress score and Geriatric Depression Scale-15 items (GDS-15) total score.
30 participants developed dementia, while 98 did not. Most of the participants who developed dementia were diagnosed at baseline with amnestic multidomain MCI. The Random Forest Plot model provided the metrics that best predicted conversion to dementia (e.g. accuracy=.88, F1=.67, and Cohen's kappa=.63). The algorithm indicated the importance of the metrics, in the following (decreasing) order: months from first assessment, age, the diagnostic group at baseline, total NPI-Q severity score, total NPI-Q stress score, and GDS-15 total score.
ML is a valuable technique for detecting the risk of conversion to dementia in MCI patients. Some NPS proxies, including NPI-Q total severity score, NPI-Q total stress score, and GDS-15 total score, were deemed as the most important variables for predicting conversion, adding further support to the hypothesis that some NPS are associated with a higher risk of dementia in MCI.
使用机器学习 (ML) 方法比较纵向研究中发展为痴呆症和未发展为痴呆症的参与者的神经精神症状 (NPS)。
曼-惠特尼 U 检验和 ML 分析。使用 10 折分层验证程序评估了 9 种 ML 算法。为每个算法计算了性能指标(准确性、召回率、F1 分数和 Cohen's kappa),并为表现最佳的算法计算了图形指标(ROC 和精度-召回曲线)和特征分析。
初级保健中心。
128 名参与者:78 名认知正常和 50 名 MCI。
基线时的诊断、从基线评估到第 3 次随访或发展为痴呆症的月份、性别、年龄、Charlson 合并症指数、神经精神问卷-问卷 (NPI-Q) 个体项目、NPI-Q 总严重程度、总应激评分和老年抑郁量表-15 项 (GDS-15) 总分。
30 名参与者发展为痴呆症,98 名参与者未发展为痴呆症。大多数发展为痴呆症的参与者在基线时被诊断为遗忘型多域 MCI。随机森林图模型提供了最佳预测向痴呆症转化的指标(例如,准确性=0.88、F1=0.67 和 Cohen's kappa=0.63)。该算法指出了以下(递减)顺序的指标的重要性:从第一次评估到诊断为痴呆症的时间、年龄、基线时的诊断组、总 NPI-Q 严重程度评分、总 NPI-Q 应激评分和 GDS-15 总分。
ML 是一种有价值的技术,可以用于检测 MCI 患者向痴呆症转化的风险。一些 NPS 指标,包括 NPI-Q 总严重程度评分、NPI-Q 总应激评分和 GDS-15 总分,被认为是预测转化的最重要变量,进一步支持了一些 NPS 与 MCI 患者更高痴呆风险相关的假设。