LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135, Avenue de Rangueil, F-31077 Toulouse, France.
LISBP, Université de Toulouse, CNRS, INRA, INSA, UPS 135 avenue de Rangueil, F-31077 Toulouse, France.
Nanoscale. 2019 Sep 21;11(35):16544-16552. doi: 10.1039/c9nr04149d. Epub 2019 Aug 28.
Bimetallic ruthenium-platinum nanoparticles (RuPt NPs) of different surface distributions and stabilized by using a sulfonated N-heterocyclic carbene ligand (1-(2,6-diisopropylphenyl)-3-(3-potassium sulfonatopropyl)-imidazol-2-ylidene) were prepared from Ru(COD)(COT) (COD = cyclooctadiene and COT = cyclooctatriene), and platinum precursors having various decomposition rates (Pt(NBE), NBE = norbornene, Pt(CH)(COD) and Pt(DBA), DBA = dibenzylideneacetone). Structural and surface studies by FT-IR and solid-state MAS NMR, using carbon monoxide as a probe molecule, revealed the presence of different structures and surface compositions for different nanoparticles of similar sizes, which principally depend on the decomposition rate of the organometallic precursors used during the synthesis. Specifically, the slower the decomposition rate of the platinum precursor, the higher the number of Pt atoms at the NP surface. The different bimetallic RuPt NPs, as well as their monometallic equivalents (Pt and Ru NPs), were used in isotopic H/D exchange through C-H activation on l-lysine. Interestingly, the activity and selectivity of the direct C-H deuteration were dependent on the NP surface composition at the α position but not on that at the ε position. Chemical shift perturbation (CSP) experiments revealed that the difference in reactivity at the α position is due to a Pt-carboxylate interaction, which hinders the H/D exchange.
制备了不同表面分布的双金属钌-铂纳米粒子(RuPt NPs),它们由 Ru(COD)(COT)(COD=环辛二烯,COT=环辛三烯)和具有不同分解速率的铂前体(Pt(NBE),NBE=降冰片烯,Pt(CH)(COD)和 Pt(DBA),DBA=二苄叉丙酮)组成,并使用磺化 N-杂环卡宾配体(1-(2,6-二异丙基苯基)-3-(3-磺丙基)-咪唑-2-亚基)稳定。通过傅里叶变换红外光谱(FT-IR)和固态 MAS NMR 以及一氧化碳作为探针分子的结构和表面研究表明,对于具有相似尺寸的不同纳米粒子,存在不同的结构和表面组成,这主要取决于合成过程中使用的有机金属前体的分解速率。具体而言,铂前体的分解速率越慢,纳米粒子表面的 Pt 原子数量就越高。不同的双金属 RuPt NPs 及其单金属等价物(Pt 和 Ru NPs)被用于通过 l-赖氨酸上的 C-H 活化进行同位素 H/D 交换。有趣的是,直接 C-H 氘代的活性和选择性取决于α位的 NP 表面组成,但不取决于ε位的 NP 表面组成。化学位移扰动(CSP)实验表明,α位反应性的差异是由于 Pt-羧酸盐相互作用,它阻碍了 H/D 交换。