Cleri Fabrizio
Institut d'Electronique, Microélectronique et Nanotechnologie (IEMN, UMR Cnrs 8520), 59652, Villeneuve d'Ascq, France.
Departement de Physique, Université de Lille, 59650, Villeneuve d'Ascq, France.
Eur Phys J E Soft Matter. 2019 Aug 29;42(8):112. doi: 10.1140/epje/i2019-11878-7.
Computational models aiming at the spatio-temporal description of cancer evolution are a suitable framework for testing biological hypotheses from experimental data, and generating new ones. Building on our recent work (J. Theor. Biol. 389, 146 (2016)) we develop a 3D agent-based model, capable of tracking hundreds of thousands of interacting cells, over time scales ranging from seconds to years. Cell dynamics is driven by a Monte Carlo solver, incorporating partial differential equations to describe chemical pathways and the activation/repression of "genes", leading to the up- or down-regulation of specific cell markers. Each cell-agent of different kind (stem, cancer, stromal etc.) runs through its cycle, undergoes division, can exit to a dormant, senescent, necrotic state, or apoptosis, according to the inputs from its systemic network. The basic network at this stage describes glucose/oxygen/ATP cycling, and can be readily extended to cancer-cell specific markers. Eventual accumulation of chemical/radiation damage to each cell's DNA is described by a Markov chain of internal states, and by a damage-repair network, whose evolution is linked to the cell systemic network. Aimed at a direct comparison with experiments of tumorsphere growth from stem cells, the present model will allow to quantitatively study the role of transcription factors involved in the reprogramming and variable radio-resistance of simulated cancer-stem cells, evolving in a realistic computer simulation of a growing multicellular tumorsphere.
旨在对癌症演变进行时空描述的计算模型,是一个用于从实验数据检验生物学假设并生成新假设的合适框架。基于我们最近的工作(《理论生物学杂志》389卷,第146页(2016年)),我们开发了一个基于代理的三维模型,该模型能够在从秒到年的时间尺度上追踪数十万相互作用的细胞。细胞动力学由蒙特卡罗求解器驱动,该求解器纳入偏微分方程来描述化学途径以及“基因”的激活/抑制,从而导致特定细胞标志物的上调或下调。不同类型(干细胞、癌细胞、基质细胞等)的每个细胞代理都经历其周期,进行分裂,根据其系统网络的输入,可以进入休眠、衰老、坏死状态或凋亡。现阶段的基本网络描述葡萄糖/氧气/ATP循环,并且可以很容易地扩展到癌细胞特异性标志物。每个细胞DNA的化学/辐射损伤的最终积累通过内部状态的马尔可夫链以及损伤修复网络来描述,其演变与细胞系统网络相关联。为了与干细胞肿瘤球生长的实验进行直接比较,本模型将允许定量研究参与模拟癌症干细胞重编程和可变放射抗性的转录因子的作用,这些干细胞在不断生长的多细胞肿瘤球的真实计算机模拟中演变。