Li Li, Jara Alejandro, García-Zattera María José, Hanson Timothy E
Department of Mathematics and Statistics, The University of New Mexico, Albuquerque, NM 87131, USA (
Department of Statistics, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile (
J Am Stat Assoc. 2018;114(525):129-145. doi: 10.1080/01621459.2018.1476240. Epub 2018 Oct 26.
Motivated by data gathered in an oral health study, we propose a Bayesian nonparametric approach for population-averaged modeling of correlated time-to-event data, when the responses can only be determined to lie in an interval obtained from a sequence of examination times and the determination of the occurrence of the event is subject to misclassification. The joint model for the true, unobserved time-to-event data is defined semiparametrically; proportional hazards, proportional odds, and accelerated failure time (proportional quantiles) are all fit and compared. The baseline distribution is modeled as a flexible tailfree prior. The joint model is completed by considering a parametric copula function. A general misclassification model is discussed in detail, considering the possibility that different examiners were involved in the assessment of the occurrence of the events for a given subject across time. We provide empirical evidence that the model can be used to estimate the underlying time-to-event distribution and the misclassification parameters without any external information about the latter parameters. We also illustrate the effect on the statistical inferences of neglecting the presence of misclassification.
受一项口腔健康研究中收集的数据的启发,我们提出了一种贝叶斯非参数方法,用于对相关事件发生时间数据进行总体平均建模,此时响应只能确定位于从一系列检查时间获得的区间内,且事件发生的判定存在误判情况。针对真实的、未观察到的事件发生时间数据的联合模型采用半参数定义;对比例风险、比例优势和加速失效时间(比例分位数)均进行拟合和比较。基线分布建模为灵活的无尾先验。通过考虑参数化的Copula函数来完善联合模型。详细讨论了一个通用的误判模型,考虑了不同检查人员在不同时间对给定受试者事件发生情况进行评估的可能性。我们提供了经验证据,表明该模型可用于估计潜在的事件发生时间分布和误判参数,而无需关于后一类参数的任何外部信息。我们还说明了忽略误判情况对统计推断的影响。