Suppr超能文献

一种基于心音图的血压估计新方法。

A new approach for blood pressure estimation based on phonocardiogram.

作者信息

Omari Tahar, Bereksi-Reguig Fethi

机构信息

1Department of Biomedical Engineering, Boumerdes university, 35000 Boumerdes, Algeria.

2Department of Biomedical Engineering, Tlemcen university, 13000 Tlemcen, Algeria.

出版信息

Biomed Eng Lett. 2019 Jun 7;9(3):395-406. doi: 10.1007/s13534-019-00113-z. eCollection 2019 Aug.

Abstract

Continuous and non-invasive measurement of blood pressure (BP) is of great importance particularly for patients in critical state. To achieve continuous and cuffless BP monitoring, pulse transit time (PTT) has been reported as a potential parameter. Nevertheless, this approach remains very sensitive, cumbersome and disagreeable in ambulatory measurement. This paper proposes a new approach to estimate blood pressure through PCG signal by exploring the correlation between PTT and diastolic duration (S21). In this purpose, an artificial neural network was developed using as input data: (systolic duration, diastolic duration, heart rate, sex, height and weight). According to the NN decision, the mean blood pressure was measured and consequently the systolic and the diastolic pressures were estimated. The proposed method is evaluated on 37 subjects. The obtained results are satisfactory, where, the error in the estimation of the systolic and the diastolic pressures compared to the commercial blood pressure device was in the order of  mmHg and  mmHg, respectively, which are very close to the AAMI standard,  mmHg. This shows the feasibility of estimating of blood pressure using PCG.

摘要

连续无创血压测量对于危重症患者尤为重要。为实现连续无袖带血压监测,脉搏传输时间(PTT)已被报道为一个潜在参数。然而,这种方法在动态测量中仍然非常敏感、繁琐且令人不适。本文提出了一种通过心音图(PCG)信号估计血压的新方法,该方法通过探索PTT与舒张期时长(S21)之间的相关性来实现。为此,开发了一种人工神经网络,其输入数据包括(收缩期时长、舒张期时长、心率、性别、身高和体重)。根据神经网络的决策,测量平均血压,进而估计收缩压和舒张压。该方法在37名受试者身上进行了评估。获得的结果令人满意,与商用血压设备相比,收缩压和舒张压估计的误差分别约为 mmHg和 mmHg,非常接近美国医疗器械促进协会(AAMI)标准 mmHg。这表明利用PCG估计血压是可行的。

相似文献

1
A new approach for blood pressure estimation based on phonocardiogram.
Biomed Eng Lett. 2019 Jun 7;9(3):395-406. doi: 10.1007/s13534-019-00113-z. eCollection 2019 Aug.
2
A novel method for non-invasive blood pressure estimation based on continuous pulse transit time: An observational study.
Psychophysiology. 2023 Feb;60(2):e14173. doi: 10.1111/psyp.14173. Epub 2022 Sep 8.
3
Cuffless blood-pressure estimation method using a heart-rate variability-derived parameter.
Physiol Meas. 2018 Sep 5;39(9):095002. doi: 10.1088/1361-6579/aad902.
4
Can the timing-characteristics of phonocardiographic signal be used for cuffless systolic blood pressure estimation?
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2878-9. doi: 10.1109/IEMBS.2006.259873.
5
Using a new PPG indicator to increase the accuracy of PTT-based continuous cuffless blood pressure estimation.
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:738-741. doi: 10.1109/EMBC.2017.8036930.
6
Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram.
Bioengineering (Basel). 2022 Sep 6;9(9):446. doi: 10.3390/bioengineering9090446.
7
Comparative study on artificial neural network with multiple regressions for continuous estimation of blood pressure.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:6942-5. doi: 10.1109/IEMBS.2005.1616102.
8
Continuous Cuffless Blood Pressure Estimation Using Pulse Transit Time and Photoplethysmogram Intensity Ratio.
IEEE Trans Biomed Eng. 2016 May;63(5):964-972. doi: 10.1109/TBME.2015.2480679. Epub 2015 Sep 22.
9
The Cuffless Blood Pressure Measurement with Multi-dimension Regression Model based on Characteristics of Pulse Waveform.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:6838-6841. doi: 10.1109/EMBC.2019.8856749.

引用本文的文献

1
Phonocardiogram signal dataset paired with blood pressure measurements.
Data Brief. 2025 Mar 5;59:111433. doi: 10.1016/j.dib.2025.111433. eCollection 2025 Apr.
2
Wearable Blood Pressure Monitoring Devices: Understanding Heterogeneity in Design and Evaluation.
IEEE Trans Biomed Eng. 2024 Dec;71(12):3569-3592. doi: 10.1109/TBME.2024.3434344. Epub 2024 Nov 21.
3
Estimation of systolic blood pressure by Random Forest using heart sounds and a ballistocardiogram.
Sci Rep. 2022 Oct 13;12(1):17196. doi: 10.1038/s41598-022-22205-0.
4
A novel intelligent system based on adjustable classifier models for diagnosing heart sounds.
Sci Rep. 2022 Jan 25;12(1):1283. doi: 10.1038/s41598-021-04136-4.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验