Suppr超能文献

RNA测序数据的建模与分析:基于统计学视角的综述

Modeling and analysis of RNA-seq data: a review from a statistical perspective.

作者信息

Li Wei Vivian, Li Jingyi Jessica

机构信息

Department of Statistics, University of California, Los Angeles, Los Angeles, CA 90095-1554, USA.

Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095-088, USA.

出版信息

Quant Biol. 2018 Sep;6(3):195-209. doi: 10.1007/s40484-018-0144-7. Epub 2018 Aug 10.

Abstract

BACKGROUND

Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date.

RESULTS

We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations.

CONCLUSIONS

The development of statistical and computational methods for analyzing RNA-seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statistical models and exhibit different performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development.

摘要

背景

自从新一代RNA测序(RNA-seq)技术发明以来,它们已成为研究生物样本中RNA分子的存在情况和数量的强大工具,并彻底改变了转录组学研究。在四个不同层面(样本、基因、转录本和外显子)对RNA-seq数据进行分析涉及多个统计和计算问题,其中一些问题至今仍具有挑战性。

结果

我们从统计学角度审视了样本、基因、转录本和外显子层面的RNA-seq分析工具。我们还强调了最具实际考量的生物学和统计学问题。

结论

在过去十年中,用于分析RNA-seq数据的统计和计算方法取得了重大进展。然而,为回答相同生物学问题而开发的方法通常依赖于不同的统计模型,并且在不同场景下表现出不同的性能。本综述讨论并比较了多种常用统计模型的假设,希望能帮助用户根据需要选择合适的方法,并协助开发者进行未来的方法开发。

相似文献

引用本文的文献

5
Predicting and comparing transcription start sites in single cell populations.预测和比较单细胞群体中的转录起始位点。
PLoS Comput Biol. 2025 Apr 3;21(4):e1012878. doi: 10.1371/journal.pcbi.1012878. eCollection 2025.
9
RoseAP: an analytical platform for gene function of .RoseAP:用于……基因功能的分析平台 。(原文此处不完整)
Front Plant Sci. 2023 Jun 30;14:1197119. doi: 10.3389/fpls.2023.1197119. eCollection 2023.

本文引用的文献

3
The Human Cell Atlas.人类细胞图谱
Elife. 2017 Dec 5;6:e27041. doi: 10.7554/eLife.27041.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验