Suppr超能文献

通过使用LiZrO进行表面改性减轻LiNiMnCoO正极材料的表面降解和电压衰减

Mitigating the Surface Degradation and Voltage Decay of LiNiMnCoO Cathode Material through Surface Modification Using LiZrO.

作者信息

Prakasha Kunkanadu R, Sathish Marappan, Bera Parthasarathi, Prakash Annigere S

机构信息

CSIR - Network Institutes of Solar Energy (CSIR - NISE) and Academy of Scientific and Innovative Research (AcSIR), CSIR - Central Electrochemical Research Institute-Chennai Unit, CSIR Madras Complex, Taramani, Chennai 600113, India.

Functional Materials Division, CSIR - Central Electrochemical Research Institute, Karaikudi 630003, India.

出版信息

ACS Omega. 2017 May 25;2(5):2308-2316. doi: 10.1021/acsomega.7b00381. eCollection 2017 May 31.

Abstract

In the quest to tackle the issue of surface degradation and voltage decay associated with Li-rich phases, Li-ion conductive LiZrO (LZO) is coated on LiNiMnCoO (LNMC) by a simple wet chemical process. The LZO phase coated on LNMC, with a thickness of about 10 nm, provides a structural integrity and facilitates the ion pathways throughout the charge-discharge process, which results in significant improvement of the electrochemical performances. The surface-modified cathode material exhibits a reversible capacity of 225 mA h g (at C/5 rate) and retains 85% of the initial capacity after 100 cycles. Whereas, the uncoated pristine sample shows a capacity of 234 mA h g and retains only 57% of the initial capacity under identical conditions. Electrochemical impedance spectroscopy reveals that the LZO coating plays a vital role in stabilizing the interface between the electrode and electrolyte during cycling; thus, it alleviates material degradation and voltage fading and ameliorates the electrochemical performance.

摘要

为了解决与富锂相相关的表面降解和电压衰减问题,通过简单的湿化学工艺将锂离子导电的LiZrO(LZO)涂覆在LiNiMnCoO(LNMC)上。涂覆在LNMC上的LZO相厚度约为10 nm,提供了结构完整性,并在整个充放电过程中促进了离子传导路径,从而显著改善了电化学性能。表面改性的正极材料在C/5倍率下具有225 mA h g的可逆容量,在100次循环后保留了初始容量的85%。而未涂覆的原始样品在相同条件下显示出234 mA h g的容量,仅保留了初始容量的57%。电化学阻抗谱表明,LZO涂层在循环过程中对稳定电极与电解质之间的界面起着至关重要的作用;因此,它减轻了材料降解和电压衰减,并改善了电化学性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee76/6641096/0e7ea2eca8af/ao-2017-00381h_0003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验