Suppr超能文献

锂镍锰钴氧化物首次电化学循环中氧化和还原极限下的结构演变

Structural evolution at the oxidative and reductive limits in the first electrochemical cycle of LiNiMnCoO.

作者信息

Yin Wei, Grimaud Alexis, Rousse Gwenaelle, Abakumov Artem M, Senyshyn Anatoliy, Zhang Leiting, Trabesinger Sigita, Iadecola Antonella, Foix Dominique, Giaume Domitille, Tarascon Jean-Marie

机构信息

Chimie du Solide et de l'Energie, UMR 8260, Collège de France, 75231, Paris Cedex 05, France.

Sorbonne Université, 4 Place Jussieu, 75005, Paris, France.

出版信息

Nat Commun. 2020 Mar 6;11(1):1252. doi: 10.1038/s41467-020-14927-4.

Abstract

High-energy-density lithium-rich materials are of significant interest for advanced lithium-ion batteries, provided that several roadblocks, such as voltage fade and poor energy efficiency are removed. However, this remains challenging as their functioning mechanisms during first cycle are not fully understood. Here we enlarge the cycling potential window for LiNiMnCoO electrode, identifying novel structural evolution mechanism involving a structurally-densified single-phase A' formed under harsh oxidizing conditions throughout the crystallites and not only at the surface, in contrast to previous beliefs. We also recover a majority of first-cycle capacity loss by applying a constant-voltage step on discharge. Using highly reducing conditions we obtain additional capacity via a new low-potential P" phase, which is involved into triggering oxygen redox on charge. Altogether, these results provide deeper insights into the structural-composition evolution of LiNiMnCoO and will help to find measures to cure voltage fade and improve energy efficiency in this class of material.

摘要

高能量密度的富锂材料对于先进的锂离子电池具有重大意义,前提是要消除几个障碍,如电压衰减和能量效率低下等问题。然而,这仍然具有挑战性,因为它们在首次循环期间的运行机制尚未完全了解。在这里,我们扩大了LiNiMnCoO电极的循环电位窗口,确定了一种新的结构演变机制,该机制涉及在整个微晶中而非仅在表面的苛刻氧化条件下形成的结构致密的单相A',这与之前的观点相反。我们还通过在放电时施加恒压步骤恢复了大部分首次循环容量损失。在高度还原条件下,我们通过一个新的低电位P"相获得了额外的容量,该相在充电时参与触发氧氧化还原反应。总之,这些结果为LiNiMnCoO的结构-组成演变提供了更深入的见解,并将有助于找到解决这类材料中电压衰减和提高能量效率的措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/035d/7060333/78f6b66da9d8/41467_2020_14927_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验