Suppr超能文献

用于溶液处理有机太阳能电池的基于D-π-A-π-D结构的二酮吡咯并吡咯电子给体

D-π-A-π-D Structured Diketopyrrolopyrrole-Based Electron Donors for Solution-Processed Organic Solar Cells.

作者信息

Yadagiri Bommaramoni, Narayanaswamy Kamatham, Srinivasa Rao Ravulakollu, Bagui Anirban, Datt Ram, Gupta Vinay, Singh Surya Prakash

机构信息

Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Uppal Road, Tarnaka, Hyderabad 500007, India.

Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India.

出版信息

ACS Omega. 2018 Oct 17;3(10):13365-13373. doi: 10.1021/acsomega.8b01515. eCollection 2018 Oct 31.

Abstract

Solution-processable D-π-A-π-D structured two organic small molecules bearing thienyl diketopyrrolopyrrole (TDPP) and furanyl diketopyrrolopyrrole (FDPP) as central acceptor units and cyano on the π-bridge and phenothiazine as the terminal donor units, coded as and , are designed and synthesized. The C-H arylation and Suzuki coupling protocols have been adopted for synthesizing the molecules. Solution-processed organic solar cells (OSCs) were constructed with these molecules as the donors and phenyl-C-butyric acid methyl ester as the acceptor yielding power conversion efficiencies (PCE) of 4.0% for and 5.2% for , which is the highest PCE reported so far from the small molecular DPP-phenothiazine-based architecture for solution-based OSCs. The effect of heteroatom substitution on thermal stability and optoelectronic and photovoltaic performances is also systematically investigated herein. This work demonstrates that replacement of oxygen with sulfur in these kinds of small molecules remarkably improves the photovoltaic performance of OSCs.

摘要

设计并合成了两种可溶液加工的D-π-A-π-D结构有机小分子,它们以噻吩基二酮吡咯并吡咯(TDPP)和呋喃基二酮吡咯并吡咯(FDPP)作为中心受体单元,在π桥处带有氰基,以吩噻嗪作为末端供体单元,分别编码为 和 。采用C-H芳基化和铃木偶联方法合成这些分子。以这些分子作为供体、苯基-C-丁酸甲酯作为受体构建了溶液加工有机太阳能电池(OSC), 的功率转换效率(PCE)为4.0%, 的为5.2%,这是目前基于小分子DPP-吩噻嗪结构的溶液型OSC所报道的最高PCE。本文还系统研究了杂原子取代对热稳定性、光电和光伏性能的影响。这项工作表明,在这类小分子中用硫取代氧可显著提高OSC 的光伏性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/03f1/6645040/f7d025379954/ao-2018-01515g_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验