Suppr超能文献

铀酰、镎酰、钚酰和镅酰与环状酰亚胺二肟络合的结构分析

Structural Analysis of the Complexation of Uranyl, Neptunyl, Plutonyl, and Americyl with Cyclic Imide Dioximes.

作者信息

Penchoff Deborah A, Peterson Charles C, Camden Jon P, Bradshaw James A, Auxier John D, Schweitzer George K, Jenkins David M, Harrison Robert J, Hall Howard L

机构信息

Institute for Nuclear Security, University of Tennessee, 1640 Cumberland Avenue, Knoxville, Tennessee 37996, United States.

Joint Institute for Computational Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Bldg. 5100, Oak Ridge, Tennessee 37831, United States.

出版信息

ACS Omega. 2018 Oct 24;3(10):13984-13993. doi: 10.1021/acsomega.8b02068. eCollection 2018 Oct 31.

Abstract

Knowledge-based design of extracting agents for selective binding of actinides is essential in stock-pile stewardship, environmental remediation, separations, and nuclear fuel disposal. Robust computational protocols are critical for in depth understanding of structural properties and to further advance the design of selective ligands. In particular, rapid radiochemical separations require predictive capabilities for binding in the gas phase. This study focuses on gas-phase binding preferences of cyclic imide dioximes to uranyl, neptunyl, plutonyl, and americyl. Structural properties, electron withdrawing effects, and their effects on binding preferences are studied with natural bond-order population analysis. The aromatic amidoximes are found to have a larger electron-donation effect than the aliphatic amidoximes. It is also found that plutonyl is more electron withdrawing than uranyl, neptunyl, and americyl when bound to the cyclic imide dioximes studied.

摘要

基于知识设计用于锕系元素选择性结合的萃取剂,对于库存管理、环境修复、分离及核燃料处置至关重要。强大的计算协议对于深入理解结构性质以及进一步推进选择性配体的设计至关重要。特别是,快速放射化学分离需要气相结合的预测能力。本研究聚焦于环状酰亚胺二肟对铀酰、镎酰、钚酰和镅酰的气相结合偏好。通过自然键序布居分析研究了结构性质、吸电子效应及其对结合偏好的影响。发现芳香族偕胺肟比脂肪族偕胺肟具有更大的给电子效应。还发现,在所研究的环状酰亚胺二肟结合时,钚酰比铀酰、镎酰和镅酰具有更强的吸电子能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24c1/6645112/e200ea4a452f/ao-2018-020687_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验