Nufer Sebastian, Lynch Peter, Cann Maria, Large Matthew J, Salvage Jonathan P, Víctor-Román Sandra, Hernández-Ferrer Javier, Benito Ana M, Maser Wolfgang K, Brunton Adam, Dalton Alan B
M-Solv Ltd, Oxonian Park, Langford Locks, Kidlington, Oxford OX5 1FP, U.K.
Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, U.K.
ACS Omega. 2018 Nov 8;3(11):15134-15139. doi: 10.1021/acsomega.8b02118. eCollection 2018 Nov 30.
Carbon nanofoam (CNF) is a highly porous, amorphous carbon nanomaterial that can be produced through the interaction of a high-fluence laser and a carbon-based target material. The morphology and electrical properties of CNF make it an ideal candidate for supercapacitor applications. In this paper, we prepare and characterize CNF supercapacitor electrodes through two different processes, namely, a direct process and a water-transfer process. We elucidate the influence of the production process on the microstructural properties of the CNF, as well as the final electrochemical performance. We show that a change in morphology due to capillary forces doubles the specific capacitance of the wet-transferred CNF electrodes.
碳纳米泡沫(CNF)是一种高度多孔的非晶态碳纳米材料,可通过高能量密度激光与碳基靶材相互作用制备而成。CNF的形态和电学性质使其成为超级电容器应用的理想候选材料。在本文中,我们通过两种不同的工艺制备并表征了CNF超级电容器电极,即直接工艺和水转移工艺。我们阐明了生产工艺对CNF微观结构性质以及最终电化学性能的影响。我们表明,由于毛细作用力导致的形态变化使湿转移CNF电极的比电容增加了一倍。