Ghosh Subrata, Righi Massimiliano, Macrelli Andrea, Divitini Giorgio, Orecchia Davide, Maffini Alessandro, Goto Francesco, Bussetti Gianlorenzo, Dellasega David, Russo Valeria, Li Bassi Andrea, Casari Carlo S
Micro and Nanostructured Materials Laboratory - NanoLab, Department of Energy, Politecnico di Milano, via Ponzio 34/3, 20133, Milano, Italy.
Electron Spectroscopy and Nanoscopy, Istituto Italiano di Tecnologia, via Morego 30, 16163, Genova, Italy.
ChemSusChem. 2024 Dec 20;17(24):e202400755. doi: 10.1002/cssc.202400755. Epub 2024 Sep 6.
In pulsed laser deposition, along the traditionally exploited deposition on the front-side of the plasma-plume, a coating forms on the surface of the target as well. For reproducibility, this residue is usually cleaned and discarded. Here we instead investigate the target-side coated materials and employ them as a binder-free supercapacitor electrode. The ballistic-aggregated, target-side nanofoam is compact and features a larger fraction of sp-carbon, higher nitrogen content with higher graphitic-N and lower oxygen content with fewer COOH groups than that of diffusive-aggregated conventional nanofoams. They are highly hydrogenated graphite-like amorphous carbon and superhydrophilic. The resulting symmetric micro-supercapacitor delivers higher volumetric capacitance of 522 mF/cm at 100 mV/s and 104 % retention after 10000 charge-discharge cycles over conventional nanofoam (215 mF/cm and 85 % retention) with an areal capacitance of 134 μF/cm at 120 Hz and ultrafast frequency response. Utilizing the normally discarded target-side material can therefore enable high performing devices while reducing waste, cost and energy input per usable product, leading towards a greater sustainability of nanomaterials synthesis and deposition techniques.
在脉冲激光沉积过程中,除了传统上利用等离子体羽流正面进行沉积外,靶材表面也会形成涂层。为了保证可重复性,这种残留物通常会被清理并丢弃。在此,我们转而研究靶材侧的涂层材料,并将其用作无粘结剂超级电容器电极。与扩散聚集的传统纳米泡沫相比,弹道聚集的靶材侧纳米泡沫结构紧凑,具有更大比例的sp-碳、更高的氮含量(更高的石墨氮)和更低的氧含量(更少的羧基)。它们是高度氢化的类石墨无定形碳,具有超亲水性。由此制备的对称微型超级电容器在100 mV/s时具有522 mF/cm³的更高体积电容,在10000次充放电循环后保留率为104%,优于传统纳米泡沫(215 mF/cm³和85%的保留率),在120 Hz时面积电容为134 μF/cm²,具有超快的频率响应。因此,利用通常被丢弃的靶材侧材料能够制造出高性能的器件,同时减少浪费、成本和每个可用产品的能量输入,朝着纳米材料合成和沉积技术的更大可持续性发展。