Matheswaran Priyadharshini, Karuppiah Pandi, Chen Shen-Ming, Thangavelu Pazhanivel, Ganapathi Bharathi
Smart Materials Interface Laboratory, Department of Physics, Periyar University, Salem 636 011, Tamil Nadu, India.
Electro-Analysis and Bio-Electrochemistry Laboratory, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, ROC.
ACS Omega. 2018 Dec 28;3(12):18694-18704. doi: 10.1021/acsomega.8b02635. eCollection 2018 Dec 31.
Developing a novel electrode material with better electrochemical behavior and extended cyclability is a major issue in the field of hybrid capacitors. In this work, we propose a novel strategy for the facile synthesis of nickel-cobalt pyrophosphate nanoparticles anchored on graphitic carbon nitride (NiCoPO/g-CN) via the simple solvothermal method. Field emission scanning electron microscopy and transmission electron microscopy analysis revealed the uniform anchoring of NiCoPO nanocomposite on g-CN nanosheets. Benefitting from the effect of amorphous nature and a conductive matrix of the NiCoPO/g-CN (NP3) composite, the material achieves a specific capacitance of 342 F g at a scan rate of 5 mV s. Impressively, the electrode shows long-term cycling stability with 100% capacitance retention over 5000 cycles. Employing activated carbon as an anode and as-prepared NP3 as a cathode, the assembled asymmetric hybrid cell exhibits high-energy density and exceptional cyclability (specific capacitance retention over 10 000 cycles). The outstanding electrochemical and cyclic stability is attributed to the shortest electron-ion pathway with effective interfacial interaction. The low electronic resistance of the NiCoPO/g-CN nanocomposite is revealed by varying the bias voltage variation in the electrochemical impedance spectroscopy. Our results promise better utilization of the bimetallic pyrophosphate-anchored g-CN matrix as a potential electrode for high-performance energy storage devices.
开发具有更好电化学性能和更长循环寿命的新型电极材料是混合电容器领域的一个主要问题。在这项工作中,我们提出了一种新颖的策略,通过简单的溶剂热法轻松合成锚定在石墨氮化碳上的焦磷酸镍钴纳米颗粒(NiCoPO/g-CN)。场发射扫描电子显微镜和透射电子显微镜分析表明,NiCoPO纳米复合材料均匀地锚定在g-CN纳米片上。得益于NiCoPO/g-CN(NP3)复合材料的非晶性质和导电基质的作用,该材料在5 mV s的扫描速率下实现了342 F g的比电容。令人印象深刻的是,该电极显示出长期循环稳定性,在5000次循环中电容保持率为100%。以活性炭为阳极,以制备的NP3为阴极,组装的不对称混合电池表现出高能量密度和出色的循环性能(在10000次循环中比电容保持率)。出色的电化学和循环稳定性归因于具有有效界面相互作用的最短电子-离子路径。通过改变电化学阻抗谱中的偏置电压变化,揭示了NiCoPO/g-CN纳米复合材料的低电阻。我们的结果有望更好地利用双金属焦磷酸盐锚定的g-CN基质作为高性能储能器件的潜在电极。