Wang Dan, Kong Ling-Bin, Liu Mao-Cheng, Luo Yong-Chun, Kang Long
State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals Lanzhou University of Technology, Lanzhou 730050 (P.R. China).
School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050 (P.R. China).
Chemistry. 2015 Dec 1;21(49):17897-903. doi: 10.1002/chem.201502269. Epub 2015 Oct 19.
Herein, we describe a simple two-step approach to prepare nickel phosphide with different phases, such as Ni2 P and Ni5 P4 , to explain the influence of material microstructure and electrical conductivity on electrochemical performance. In this approach, we first prepared a Ni-P precursor through a ball milling process, then controlled the synthesis of either Ni2 P or Ni5 P4 by the annealing method. The as-prepared Ni2 P and Ni5 P4 are investigated as supercapacitor electrode materials for potential energy storage applications. The Ni2 P exhibits a high specific capacitance of 843.25 F g(-1) , whereas the specific capacitance of Ni5 P4 is 801.5 F g(-1) . Ni2 P possesses better cycle stability and rate capability than Ni5 P4 . In addition, the Fe2 O3 //Ni2 P supercapacitor displays a high energy density of 35.5 Wh kg(-1) at a power density of 400 W kg(-1) and long cycle stability with a specific capacitance retention rate of 96 % after 1000 cycles, whereas the Fe2 O3 //Ni5 P4 supercapacitor exhibits a high energy density of 29.8 Wh kg(-1) at a power density of 400 W kg(-1) and a specific capacitance retention rate of 86 % after 1000 cycles.
在此,我们描述了一种简单的两步法来制备具有不同相的磷化镍,如Ni₂P和Ni₅P₄,以解释材料微观结构和电导率对电化学性能的影响。在这种方法中,我们首先通过球磨工艺制备了Ni-P前驱体,然后通过退火方法控制合成Ni₂P或Ni₅P₄。所制备的Ni₂P和Ni₅P₄作为超级电容器电极材料用于潜在的储能应用进行了研究。Ni₂P表现出843.25 F g⁻¹的高比电容,而Ni₅P₄的比电容为801.5 F g⁻¹。Ni₂P比Ni₅P₄具有更好的循环稳定性和倍率性能。此外,Fe₂O₃//Ni₂P超级电容器在功率密度为400 W kg⁻¹时显示出35.5 Wh kg⁻¹的高能量密度,并且具有长循环稳定性,在1000次循环后比电容保持率为96%,而Fe₂O₃//Ni₅P₄超级电容器在功率密度为400 W kg⁻¹时表现出29.8 Wh kg⁻¹的高能量密度,在1000次循环后比电容保持率为86%。