Goel Himanshu, Rai Neeraj
Dave C. Swalm School of Chemical Engineering, and Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, Mississippi 39762, United States.
ACS Omega. 2018 Apr 2;3(4):3646-3654. doi: 10.1021/acsomega.8b00044. eCollection 2018 Apr 30.
Predicting the nonideal phase behavior of binary and multicomponent systems remains a significant challenge for particle-based simulations. Here, we develop a transferable force field for chloroethenes, common environmental contaminants, that can accurately model the vapor liquid phase equilibria including azeotrope formation. The new all-atom force field reproduces saturated liquid densities, saturated vapor pressures, boiling points, and critical properties within 1, 10, 1, and 1% of the experiment data, respectively. Furthermore, the vapor liquid equilibria of trichloroethylene and 1-propanol binary mixture, which forms a minimum boiling point azeotrope, is predicted with a reasonable accuracy. The microstructure of neat and binary systems is explored using pair correlation functions and spatial distribution functions. As the new force field is consistent with transferable potentials for phase equilibria (TraPPE) force field, it expands the applicability of TraPPE force field to chloroethenes.
对于基于粒子的模拟而言,预测二元和多组分体系的非理想相行为仍是一项重大挑战。在此,我们针对常见环境污染物氯乙烯开发了一种可转移的力场,它能够精确模拟气液相平衡,包括共沸物的形成。新的全原子力场分别在实验数据的1%、10%、1%和1%范围内再现了饱和液体密度、饱和蒸气压、沸点和临界性质。此外,对形成最低沸点共沸物的三氯乙烯和1-丙醇二元混合物的气液相平衡进行了合理准确的预测。利用对关联函数和空间分布函数探究了纯体系和二元体系的微观结构。由于新的力场与相平衡可转移势(TraPPE)力场一致,它扩展了TraPPE力场对氯乙烯的适用性。