Suppr超能文献

可见光照射下(ZnO)(BiO)(DyO)异质结构纳米复合材料中的界面电荷转移及电子复合过程的有效终止

Interfacial Charge Transfer and Effective Termination of Electron Recombination Process in (ZnO)(BiO) (DyO) Heterostructured Nanocomposite Material under Visible Light Irradiation.

作者信息

Ramachandran Saranya, Arumugam Sivasamy

机构信息

Chemical Engineering Area, CSIR-Central Leather Research Institute, Adyar, Chennai 600 020, India.

出版信息

ACS Omega. 2018 May 2;3(5):4798-4809. doi: 10.1021/acsomega.8b00549. eCollection 2018 May 31.

Abstract

We have synthesized a novel heterostructured composite material-(ZnO)(BiO) (DyO) wherein electron-hole recombination has been successfully inhibited by an interfacial charge-transfer mechanism across a semiconductor interface. As a result of this, the material possessed enhanced photoresponse under visible light irradiations. X-ray diffraction analysis shows the material to be highly nanocrystalline in nature. The band gap energy as calculated from the UV-vis-diffused reflectance spectroscopy spectrum was found to be 2.68 eV. Morphological studies by high-resolution scanning electron microscopy and high-resolution transmission electron microscopy analyses show the presence of distinct microrod-shaped αBiO and spherical ball-like clusters of ZnO and DyO nanoparticles. X-ray photoelectron spectroscopy and energy-dispersive X-ray analyses confirm the presence of Bi, Zn, Dy, and O in the material. Atomic force microscopy (AFM) analysis revealed the high surface roughness and porosity of the prepared composite. Electron paramagnetic resonance analysis confirmed the in situ generation of  OHradicals under visible light irradiation. The photocatalytic efficiency of the (ZnO)(BiO) (DyO) composite material was evaluated by the photooxidation of Orange G (OG) dye molecules under visible light irradiation. The catalyst retained its original efficiency even after the 3rd cycle of its reuse thereby validating the economic feasibility of the system. By-product analysis by ESI-MS analysis proved the complete degradation of the OG molecules from the aqueous solution.

摘要

我们合成了一种新型异质结构复合材料-(ZnO)(BiO)(DyO),其中通过跨半导体界面的界面电荷转移机制成功抑制了电子-空穴复合。因此,该材料在可见光照射下具有增强的光响应。X射线衍射分析表明该材料本质上是高度纳米晶的。由紫外-可见-漫反射光谱计算得出的带隙能量为2.68 eV。通过高分辨率扫描电子显微镜和高分辨率透射电子显微镜分析进行的形态学研究表明,存在明显的微棒状αBiO以及ZnO和DyO纳米颗粒的球形簇。X射线光电子能谱和能量色散X射线分析证实了材料中存在Bi、Zn、Dy和O。原子力显微镜(AFM)分析揭示了所制备复合材料的高表面粗糙度和孔隙率。电子顺磁共振分析证实了在可见光照射下原位生成·OH自由基。通过在可见光照射下对橙黄G(OG)染料分子进行光氧化来评估(ZnO)(BiO)(DyO)复合材料的光催化效率。该催化剂即使在第三次重复使用循环后仍保持其原始效率,从而验证了该系统的经济可行性。通过电喷雾电离质谱(ESI-MS)分析进行的副产物分析证明了OG分子从水溶液中的完全降解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf5/6641874/82c6e3fa0113/ao-2018-00549u_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验