Suppr超能文献

制备具有可控结晶度和形貌的NiP纳米结构作为锂离子电池负极材料的简便方法。

Facile Method to Prepare for the NiP Nanostructures with Controlled Crystallinity and Morphology as Anode Materials of Lithium-Ion Batteries.

作者信息

Kim Chungho, Kim Hyunhong, Choi Yonghoon, Lee Han Ah, Jung Yoon Seok, Park Jongnam

机构信息

School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.

出版信息

ACS Omega. 2018 Jul 11;3(7):7655-7662. doi: 10.1021/acsomega.8b00482. eCollection 2018 Jul 31.

Abstract

Conversion reaction materials (transition metal oxides, sulfides, phosphides, etc.) are attractive in the field of lithium-ion batteries because of their high theoretical capacity and low cost. However, the realization of these materials in lithium-ion batteries is impeded by large voltage hysteresis, high polarization, inferior cycle stability, rate capability, irreversible capacity loss in first cycling, and dramatic volume change during redox reactions. One method to overcome these problems is the introduction of amorphous materials. This work introduces a facile method to synthesize amorphous and crystalline dinickel phosphide (NiP) nanoparticle clusters with identical morphology and presents a direct comparison of the two materials as anode materials for rechargeable lithium-ion batteries. To assess the effect of crystallinity and hierarchical structure of nanomaterials, it is crucial to conserve other factors including size, morphology, and ligand of nanoparticles. Although it is rarely studied about synthetic methods of well-controlled NiP nanomaterials to meet the above criteria, we synthesized amorphous, crystalline NiP, and self-assembled NiP nanoparticle clusters via thermal decomposition of nickel-surfactant complex. Interestingly, simple modulation of the quantity of nickel acetylacetonate produced amorphous, crystalline, and self-assembled NiP nanoparticles. A 0.357 M nickel-trioctylphosphine (TOP) solution leads to a reaction temperature limitation (∼315 °C) by the nickel precursor, and crystalline NiP (c-NiP) nanoparticles clusters are generated. On the contrary, a lower concentration (0.1 M) does not accompany a temperature limitation and hence high reaction temperature (330 °C) can be exploited for the self-assembly of NiP (s-NiP) nanoparticle clusters. Amorphous NiP (a-NiP) nanoparticle clusters are generated with a high concentration (0.714 M) of nickel-TOP solution and a temperature limitation (∼290 °C). The a-NiP nanoparticle cluster electrode exhibits higher capacities and Coulombic efficiency than the electrode based on c-NiP nanoparticle clusters. In addition, the amorphous structure of NiP can reduce irreversible capacity and voltage hysteresis upon cycling. The amorphous morphology of NiP also improves the rate capability, resulting in superior performance to those of c-NiP nanoparticle clusters in terms of electrode performance.

摘要

转化反应材料(过渡金属氧化物、硫化物、磷化物等)因其高理论容量和低成本,在锂离子电池领域颇具吸引力。然而,这些材料在锂离子电池中的应用受到大电压滞后、高极化、较差的循环稳定性、倍率性能、首次循环中不可逆容量损失以及氧化还原反应过程中显著的体积变化等因素的阻碍。克服这些问题的一种方法是引入非晶态材料。本文介绍了一种简便的方法来合成具有相同形貌的非晶态和晶态二镍磷化物(NiP)纳米颗粒簇,并对这两种材料作为可充电锂离子电池负极材料进行了直接比较。为了评估纳米材料的结晶度和分级结构的影响,保持包括纳米颗粒尺寸、形貌和配体在内的其他因素至关重要。尽管很少有关于合成符合上述标准的可控NiP纳米材料的方法的研究,但我们通过镍表面活性剂络合物的热分解合成了非晶态、晶态NiP以及自组装的NiP纳米颗粒簇。有趣的是,简单调节乙酰丙酮镍的量就能制备出非晶态、晶态和自组装的NiP纳米颗粒。0.357 M的镍-三辛基膦(TOP)溶液会因镍前驱体导致反应温度受限(约315℃),从而生成晶态NiP(c-NiP)纳米颗粒簇。相反,较低浓度(0.1 M)不会伴随温度限制,因此可以利用较高的反应温度(330℃)来实现NiP(s-NiP)纳米颗粒簇的自组装。高浓度(0.714 M)的镍-TOP溶液在温度受限(约290℃)的情况下生成非晶态NiP(a-NiP)纳米颗粒簇。a-NiP纳米颗粒簇电极比基于c-NiP纳米颗粒簇的电极表现出更高的容量和库仑效率。此外,NiP的非晶态结构可以降低循环时的不可逆容量和电压滞后。NiP的非晶态形貌还改善了倍率性能,在电极性能方面比c-NiP纳米颗粒簇表现更优。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b959/6644906/87719d23f2b1/ao-2018-004825_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验