Suppr超能文献

合成杠杆可实现磷化镍纳米粒子的相、尺寸和形态的独立控制。

Synthetic levers enabling independent control of phase, size, and morphology in nickel phosphide nanoparticles.

机构信息

Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.

出版信息

ACS Nano. 2011 Mar 22;5(3):2402-11. doi: 10.1021/nn1033357. Epub 2011 Mar 7.

Abstract

Simultaneous control of phase, size, and morphology in nanoscale nickel phosphides is reported. Phase-pure samples of discrete nanoparticles of Ni12P5 and Ni2P in hollow and solid morphologies can be prepared in a range of sizes (10-32 nm) by tuning key interdependent synthetic levers (P:Ni precursor ratio, temperature, time, oleylamine quantity). Size and morphology are controlled by the P:Ni ratio in the synthesis of the precursor particles, with large, hollow particles formed at low P:Ni and small, solid particles formed at high P:Ni. The P:Ni ratio also impacts the phase at the crystallization temperature (300-350 °C), with metal-rich Ni12P5 generated at low P:Ni and Ni2P at high P:Ni. Moreover, the product phase formed can be decoupled from the initial precursor ratio by the addition of more "P" at the crystallization temperature. This enables formation of hollow particles (favored by low P:Ni) of Ni2P (favored by high P:Ni). Increasing temperature and time also favor formation of Ni2P, by generating more reactive P and providing sufficient time for conversion to the thermodynamic product. Finally, increasing oleylamine concentration allows Ni12P5 to be obtained under high P:Ni precursor ratios that favor solid particle formation. Oleylamine concentration also acts to "tune" the size of the voids in particles formed at low P:Ni ratios, enabling access to Ni12P5 particles with different void sizes. This approach enables an unprecedented level of control over phase and morphology of nickel phosphide nanoparticles, paving the way for systematic investigation of the impact of these parameters on hydrodesulfurization activities of nickel phosphides.

摘要

本文报道了在纳米尺度镍磷化物中同时控制其相、尺寸和形态。通过调节关键的相互依存的合成杠杆(P:Ni 前体比、温度、时间、油胺量),可以在 10-32nm 的范围内制备出具有不同尺寸(10-32nm)的离散纳米粒子的纯相 Ni12P5 和 Ni2P 的空心和实心形态的纯相样品。尺寸和形态通过合成前体颗粒中的 P:Ni 比来控制,在低 P:Ni 下形成大的空心颗粒,在高 P:Ni 下形成小的实心颗粒。P:Ni 比也会影响在结晶温度(300-350°C)下的相,在低 P:Ni 下生成富镍的 Ni12P5,在高 P:Ni 下生成 Ni2P。此外,通过在结晶温度下添加更多的“P”,可以使形成的产物相与初始前体比解耦。这使得可以形成 Ni2P 的空心颗粒(低 P:Ni 有利)(高 P:Ni 有利)。升高温度和时间也有利于形成 Ni2P,这是因为生成了更多的活性 P 并为转化为热力学产物提供了足够的时间。最后,增加油胺浓度允许在高 P:Ni 前体比下获得 Ni12P5,该前体比有利于形成实心颗粒。油胺浓度还可以调节在低 P:Ni 比下形成的颗粒中的空隙尺寸,从而可以获得具有不同空隙尺寸的 Ni12P5 颗粒。这种方法实现了对镍磷化物纳米颗粒的相和形态的前所未有的控制水平,为系统研究这些参数对镍磷化物的加氢脱硫活性的影响铺平了道路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验