文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Performance.

作者信息

Nallabothula Harsha, Bhattacharjee Yudhajit, Samantara Laxmi, Bose Suryasarathi

机构信息

Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.

Corporate Research and Development Centre, Momentive Performance Materials Pvt. Ltd, Survey #9 Electronic City West (Phase 1), Bangalore 560100, India.

出版信息

ACS Omega. 2019 Jan 22;4(1):1781-1790. doi: 10.1021/acsomega.8b02920. eCollection 2019 Jan 31.


DOI:10.1021/acsomega.8b02920
PMID:31459434
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6649273/
Abstract

Advancement in wireless technology has increased the usage of wireless devices extensively in the past few years, which led to an increase in electromagnetic interference (EMI) in the environment. Extensive research on fabrication of EMI shielding materials has been done. However, the role of processing method of polymer composites in EMI shielding has been neglected. In this work, we investigate the role of two polymer processing methods, spin coating and compression molding, in EMI shielding application. Poly(dimethylsiloxane) (PDMS) nanocomposites with multiwalled carbon nanotube (MWCNT) were spin-coated onto glass slides and compression-molded to a similar thickness. The processing method that exhibited the best shielding was employed to fabricate multiple PDMS composites comprising different compositions of MWCNT and FeO and stacked to form a multilayered EMI shielding PDMS composite. Scanning electron micrographs revealed that MWCNT in spin-coated composites are significantly more agglomerated than in the compression-molded film. Direct current conductivity and curing temperature were higher in compression-molded films as the filler formed a well-percolated network and hindered cross-linking of polymer chains. EMI shielding results revealed that spin-coated films demonstrated greater shielding effectiveness than compression-molded composites in the Ku-band (12-18 GHz). Individual agglomerates of MWCNT in spin-coated film attenuated incoming electromagnetic radiation more effectively than well-dispersed MWCNT in compression-molded films. Therefore, PDMS composites of different compositions of MWCNT and FeO nanoparticles were prepared through spin coating and stacked with a gradient of filler concentration, which resulted in maximum shielding of -28 dB, i.e., shielding more than 99% of incoming EM radiation by a 0.9 mm film.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/8325e7550823/ao-2018-02920e_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/0ea7096dd8e9/ao-2018-02920e_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/36afada2d451/ao-2018-02920e_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/76574f850b80/ao-2018-02920e_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/40b0ae61f58b/ao-2018-02920e_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/6e15373b634e/ao-2018-02920e_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/aa7dae2da7d3/ao-2018-02920e_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/4d0cc9183fb2/ao-2018-02920e_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/f281ad402955/ao-2018-02920e_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/8325e7550823/ao-2018-02920e_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/0ea7096dd8e9/ao-2018-02920e_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/36afada2d451/ao-2018-02920e_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/76574f850b80/ao-2018-02920e_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/40b0ae61f58b/ao-2018-02920e_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/6e15373b634e/ao-2018-02920e_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/aa7dae2da7d3/ao-2018-02920e_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/4d0cc9183fb2/ao-2018-02920e_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/f281ad402955/ao-2018-02920e_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fcc/6649273/8325e7550823/ao-2018-02920e_0002.jpg

相似文献

[1]
Processing-Mediated Different States of Dispersion of Multiwalled Carbon Nanotubes in PDMS Nanocomposites Influence EMI Shielding Performance.

ACS Omega. 2019-1-22

[2]
Improved Electromagnetic Interference Shielding Properties of MWCNT-PMMA Composites Using Layered Structures.

Nanoscale Res Lett. 2009-1-17

[3]
Core-Multishell Heterostructure with Excellent Heat Dissipation for Electromagnetic Interference Shielding.

ACS Appl Mater Interfaces. 2018-8-27

[4]
Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding.

J Colloid Interface Sci. 2020-4-1

[5]
Does the Processing Method Resulting in Different States of an Interconnected Network of Multiwalled Carbon Nanotubes in Polymeric Blend Nanocomposites Affect EMI Shielding Properties?

ACS Omega. 2018-5-29

[6]
Flexible, Ultrathin, and High-Efficiency Electromagnetic Shielding Properties of Poly(Vinylidene Fluoride)/Carbon Composite Films.

ACS Appl Mater Interfaces. 2017-6-6

[7]
Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites.

J Nanosci Nanotechnol. 2007-2

[8]
Heterogeneous TiCT MXene-MWCNT@MoS Film for Enhanced Long-Term Electromagnetic Interference Shielding in the Moisture Environment.

ACS Appl Mater Interfaces. 2023-10-25

[9]
Effective Attenuation of Electromagnetic Waves by Synergetic Effect of α-FeO and MWCNT/Graphene in LDPE-Based Composites for EMI Applications.

Materials (Basel). 2022-12-16

[10]
Microwave Absorption and Shielding Property of Fe-Si-Al Alloy/MWCNT/Polymer Nanocomposites.

Langmuir. 2019-5-28

引用本文的文献

[1]
PEDOT:PSS-MWCNT Nanocomposite Wire for Routing in Energy Harvesting Devices.

Micromachines (Basel). 2025-3-27

[2]
A review on recent progress in polymer composites for effective electromagnetic interference shielding properties - structures, process, and sustainability approaches.

Nanoscale Adv. 2024-9-26

[3]
Investigation of the surface mechanical properties of functionalized single-walled carbon nanotube (SWCNT) reinforced PDMS nanocomposites using nanoindentation analysis.

RSC Adv. 2024-5-10

[4]
Medical-Radiation-Shielding Film Fabricated by Imitating the Layered Structure Pattern of Abalone Shell and Verification of Its Shielding Effect.

Materials (Basel). 2023-12-18

[5]
Transformation from Electromagnetic Inflection to Absorption of Silicone Rubber and Accordion-Shaped TiCMXene Composites by Highly Electric Conductive Multi-Walled Carbon Nanotubes.

Polymers (Basel). 2023-5-17

[6]
Electromagnetic Shielding Enhancement of Butyl Rubber/Single-Walled Carbon Nanotube Composites via Water-Induced Modification.

Polymers (Basel). 2023-4-28

[7]
Characterization of Carbon-Black-Based Nanocomposite Mixtures of Varying Dispersion for Improving Stochastic Model Fidelity.

Nanomaterials (Basel). 2023-3-1

[8]
Silver Nanowires Coated Nitrocellulose Paper for High-Efficiency Electromagnetic Interference Shielding.

ACS Omega. 2022-11-1

[9]
Progress in polymers and polymer composites used as efficient materials for EMI shielding.

Nanoscale Adv. 2020-11-10

[10]
Facile Synthesis of Polyindole/Ni Zn FeO ( = 0, 0.5, 1) Nanocomposites and Their Enhanced Microwave Absorption and Shielding Properties.

ACS Omega. 2022-3-24

本文引用的文献

[1]
Sonication-Induced Modification of Carbon Nanotubes: Effect on the Rheological and Thermo-Oxidative Behaviour of Polymer-Based Nanocomposites.

Materials (Basel). 2018-3-5

[2]
Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

ACS Appl Mater Interfaces. 2017-12-12

[3]
Absorption-Dominated Electromagnetic Wave Suppressor Derived from Ferrite-Doped Cross-Linked Graphene Framework and Conducting Carbon.

ACS Appl Mater Interfaces. 2017-1-13

[4]
Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam.

Adv Mater. 2015-2-16

[5]
Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding.

Adv Mater. 2014-4-8

[6]
Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances.

Nanoscale. 2014-4-7

[7]
A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

Sensors (Basel). 2013-3-4

[8]
Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding.

Adv Mater. 2013-3-6

[9]
Dipole polarizability of onion-like carbons and electromagnetic properties of their composites.

Nanotechnology. 2008-3-19

[10]
Stretchable microfluidic radiofrequency antennas.

Adv Mater. 2010-7-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索